The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258321 a(n) = Fibonacci(n) + n*Lucas(n). 2
 0, 2, 7, 14, 31, 60, 116, 216, 397, 718, 1285, 2278, 4008, 7006, 12179, 21070, 36299, 62304, 106588, 181812, 309305, 524942, 888977, 1502474, 2534736, 4269050, 7178911, 12054926, 20215927, 33859908, 56646980, 94667088, 158045413, 263604046, 439272349 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1). FORMULA G.f.: x*(2 + 3*x - 2*x^2)/(1 - x - x^2)^2. a(n) = -a(-n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4). a(n) = (n+1)*Fibonacci(n+1) + (n-1)*Fibonacci(n-1). a(n) = 2*A001629(n+1) + 3*A001629(n) - 2*A001629(n-1) for n>0. Sum_{i>0} 1/a(i) = .782177794921758720... MATHEMATICA Table[Fibonacci[n] + n LucasL[n], {n, 0, 40}] (* or *) LinearRecurrence[{2, 1, -2, -1}, {0, 2, 7, 14}, 40] PROG (Sage) [fibonacci(n)+n*lucas_number2(n, 1, -1) for n in (0..40)] (MAGMA) [Fibonacci(n)+n*Lucas(n): n in [0..40]] CROSSREFS Cf. A061705: n*Fibonacci(n)+Lucas(n) = (n+1)*Fibonacci(n+1)-(n-1)*Fibonacci(n-1) with n>0. Cf. A000032, A000045, A001629. Sequence in context: A221320 A221235 A224916 * A034791 A140253 A018453 Adjacent sequences:  A258318 A258319 A258320 * A258322 A258323 A258324 KEYWORD nonn,easy AUTHOR Bruno Berselli, May 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 19:52 EDT 2020. Contains 336381 sequences. (Running on oeis4.)