login
A257979
Smallest prime p for which exactly n primes k with k < p exist such that F_p-(p/k) == 0 (mod p), where F_i = A000045(i) and (a/b) denotes the Legendre symbol, or 0 if no such p exists.
1
2, 3, 11, 19, 13, 31, 47, 43, 37
OFFSET
0,1
COMMENTS
Smallest p = prime(x) such that A257978(x) == n.
Conjecture: a(9) = 0 (based on observation of the asymptotic behavior of A257978).
a(10)-a(16) are 59, 71, 101, 97, 139, 127, 149.
PROG
(PARI) for(n=0, 10, forprime(p=2, , i=0; forprime(k=2, p, if(Mod(fibonacci(p-kronecker(p, k)), p)==0, i++)); if(i==n, print1(p, ", "); break({1}))))
CROSSREFS
Cf. A257978.
Sequence in context: A024861 A025101 A025105 * A365374 A095984 A229550
KEYWORD
nonn,more
AUTHOR
Felix Fröhlich, May 15 2015
STATUS
approved