login
A257980
Sequence (d(n)) generated by Rule 3 (in Comments) with a(1) = 0 and d(1) = 3.
3
3, 1, 2, -1, 4, -2, 5, -4, 6, -3, 9, -10, 8, -5, 11, -9, 13, -12, 14, -13, 15, -11, 19, -21, 17, -14, 20, -19, 21, -18, 24, -25, 23, -17, 29, -33, 25, -23, 27, -22, 32, -31, 33, -35, 31, -27, 35, -34, 36, -29, -6, 37, -30, 44, -49, 39, -37, 41, -26, -7, 49
OFFSET
1,1
COMMENTS
Rule 3 follows. For k >= 1, let A(k) = {a(1), …, a(k)} and D(k) = {d(1), …, d(k)}. Begin with k = 1 and nonnegative integers a(1) and d(1).
Step 1: If there is an integer h such that 1 - a(k) < h < 0 and h is not in D(k) and a(k) + h is not in A(k), let d(k+1) be the least such h, let a(k+1) = a(k) + h, replace k by k + 1, and repeat Step 1; otherwise do Step 2.
Step 2: Let h be the least positive integer not in D(k) such that a(k) - h is not in A(k). Let a(k+1) = a(k) + h and d(k+1) = h. Replace k by k+1 and do Step 1.
See A257905 for a guide to related sequences and conjectures.
LINKS
EXAMPLE
a(1) = 0, d(1) = 3;
a(2) = 1, d(2) = 1;
a(3) = 3, d(3) = 2;
a(4) = 2, d(4) = -1.
MATHEMATICA
{a, f} = {{0}, {3}}; Do[tmp = {#, # - Last[a]} &[Min[Complement[#, Intersection[a, #]]&[Last[a] + Complement[#, Intersection[f, #]] &[Range[2 - Last[a], -1]]]]];
If[! IntegerQ[tmp[[1]]], tmp = {Last[a] + #, #} &[NestWhile[# + 1 &, 1, ! (! MemberQ[f, #] && ! MemberQ[a, Last[a] - #]) &]]]; AppendTo[a, tmp[[1]]]; AppendTo[f, tmp[[2]]], {120}]; {a, f} (* Peter J. C. Moses, May 14 2015 *)
CROSSREFS
Sequence in context: A066743 A257915 A257904 * A203531 A324885 A046645
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, May 19 2015
STATUS
approved