%I #13 Jun 06 2015 11:53:27
%S 3076521984,1342968750,3718250496,6398410752,1304296875,1437890625,
%T 3142968750,1824609375,3649218750,9123046875,1542389760,1923046875,
%U 1683947520,1384906752,2769813504,2845310976,1578369024,3104296875,1269843750,6349218750,1074659328
%N Pandigital numbers reordered so that the numbers A050278(n)/(2^k*5^m), where 2^k||A050278(n) and 5^m||A050278(n), appear in nondecreasing order.
%C If two such numbers A050278(n_1)/(2^k_1*5^m_1) and A050278(n_2)/(2^k_2*5^m_2) are equal, then A050278(n_1) appears earlier than A050278(n_2) iff A050278(n_1)<A050278(n_2). For example, a(8)/(2^0*5^8)=a(9)/(2^1*5^8)= 4671. There are 234710 such pairs.
%C Note that, a(1) = 3076521984 means that min(A050278(n)/(2^k*5^m)) = 3076521984/(2^21*5^0) = 1467.
%Y Cf. A050278, A257893, A257899, A257901, A257913.
%K nonn,base,fini
%O 1,1
%A _Vladimir Shevelev_ and _Peter J. C. Moses_, May 12 2015