This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257821 Decimal expansion of the unique real number a>0 such that the real part of li(-a) is zero. 4
 2, 4, 6, 6, 4, 0, 8, 2, 6, 2, 4, 1, 2, 6, 7, 8, 0, 7, 5, 1, 9, 7, 1, 0, 3, 3, 5, 0, 7, 7, 5, 9, 3, 2, 9, 5, 0, 2, 9, 0, 7, 8, 0, 8, 7, 8, 2, 7, 7, 4, 0, 9, 9, 8, 2, 3, 7, 8, 6, 0, 8, 9, 8, 8, 1, 6, 1, 2, 2, 4, 0, 9, 4, 1, 5, 0, 0, 9, 1, 5, 0, 7, 1, 7, 1, 6, 2, 7, 8, 1, 5, 8, 0, 4, 6, 5, 5, 8, 4, 7, 2, 9, 3, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS As discussed in A257819, the real part of li(z) is a well behaved function for any real z, except for the singularity at z=+1. It has three roots: z=A070769 (the Soldner's constant), z=0, and z=-a. However, unlike in the other two cases, the imaginary part of li(-a) is not infinitesimal in the neighborhood of this root; it is described in A257822. LINKS Stanislav Sykora, Table of n, a(n) for n = 1..2000 Eric Weisstein's World of Mathematics, Logarithmic Integral Wikipedia, Logarithmic integral function FORMULA Satisfies real(li(-a)) = 0. EXAMPLE 2.4664082624126780751971033507759329502907808782774099823786... MATHEMATICA RealDigits[a/.FindRoot[Re[LogIntegral[-a]]==0, {a, 2}, WorkingPrecision->120]][[1]] (* Vaclav Kotesovec, May 11 2015 *) PROG (PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex   if(imag(c)<0, return(-Pi*I-eint1(-log(c))),   return(+Pi*I-eint1(-log(c)))); }   a=-solve(x=-3, -1, real(li(x)))  \\ Better use excess realprecision CROSSREFS Cf. A070769, A257819, A257822. Sequence in context: A134920 A011031 A248844 * A238365 A259935 A054584 Adjacent sequences:  A257818 A257819 A257820 * A257822 A257823 A257824 KEYWORD nonn,cons AUTHOR Stanislav Sykora, May 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 22:25 EDT 2019. Contains 328038 sequences. (Running on oeis4.)