

A257821


Decimal expansion of the unique real number a>0 such that the real part of li(a) is zero.


4



2, 4, 6, 6, 4, 0, 8, 2, 6, 2, 4, 1, 2, 6, 7, 8, 0, 7, 5, 1, 9, 7, 1, 0, 3, 3, 5, 0, 7, 7, 5, 9, 3, 2, 9, 5, 0, 2, 9, 0, 7, 8, 0, 8, 7, 8, 2, 7, 7, 4, 0, 9, 9, 8, 2, 3, 7, 8, 6, 0, 8, 9, 8, 8, 1, 6, 1, 2, 2, 4, 0, 9, 4, 1, 5, 0, 0, 9, 1, 5, 0, 7, 1, 7, 1, 6, 2, 7, 8, 1, 5, 8, 0, 4, 6, 5, 5, 8, 4, 7, 2, 9, 3, 3, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

As discussed in A257819, the real part of li(z) is a well behaved function for any real z, except for the singularity at z=+1. It has three roots: z=A070769 (the Soldner's constant), z=0, and z=a. However, unlike in the other two cases, the imaginary part of li(a) is not infinitesimal in the neighborhood of this root; it is described in A257822.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 1..2000
Eric Weisstein's World of Mathematics, Logarithmic Integral
Wikipedia, Logarithmic integral function


FORMULA

Satisfies real(li(a)) = 0.


EXAMPLE

2.4664082624126780751971033507759329502907808782774099823786...


MATHEMATICA

RealDigits[a/.FindRoot[Re[LogIntegral[a]]==0, {a, 2}, WorkingPrecision>120]][[1]] (* Vaclav Kotesovec, May 11 2015 *)


PROG

(PARI) li(z) = {my(c=z+0.0*I); \\ If z is real, convert it to complex
if(imag(c)<0, return(Pi*Ieint1(log(c))),
return(+Pi*Ieint1(log(c)))); }
a=solve(x=3, 1, real(li(x))) \\ Better use excess realprecision


CROSSREFS

Cf. A070769, A257819, A257822.
Sequence in context: A134920 A011031 A248844 * A238365 A259935 A054584
Adjacent sequences: A257818 A257819 A257820 * A257822 A257823 A257824


KEYWORD

nonn,cons


AUTHOR

Stanislav Sykora, May 11 2015


STATUS

approved



