login
A257689
Numbers that are either ludic or prime.
4
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 115, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 161, 163, 167, 173, 175, 179, 181, 191, 193, 197, 199, 209, 211, 221, 223, 227, 229, 233, 235, 239, 241, 247, 251, 257, 263, 265
OFFSET
1,2
LINKS
MATHEMATICA
a3309[nmax_] := a3309[nmax] = Module[{t = Range[2, nmax], k, r = {1}}, While[Length[t] > 0, k = First[t]; AppendTo[r, k]; t = Drop[t, {1, -1, k}]]; r];
ludicQ[n_, nmax_] /; 1 <= n <= nmax := MemberQ[a3309[nmax], n];
terms = 1000;
f[nmax_] := f[nmax] = Select[Range[nmax], ludicQ[#, nmax] || PrimeQ[#]&] // PadRight[#, terms]&;
f[nmax = terms];
f[nmax = 2 nmax];
While[f[nmax] != f[nmax/2], nmax = 2 nmax];
seq = f[nmax] (* Jean-François Alcover, Dec 10 2021, after Ray Chandler in A003309 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A257689 (MATCHING-POS 1 1 (lambda (n) (or (= 1 (A192490 n)) (= 1 (A010051 n))))))
CROSSREFS
Union of primes (A000040) and ludic numbers (A003309).
Cf. A192506 (complement, neither ludic nor prime), A192503 (ludic and prime), A192504 (ludic and nonprime), A192505 (nonludic and prime).
Differs from A206074(n-1), A186891(n) and A257688(n) for the first time at n=19, where a(19) = 59, while A206074(18) = A186891(19) = A257688(19) = 55, a term missing from here.
Differs from A257691 for the first time at n=24, where a(24) = 77, while A257691(24) = 79.
Sequence in context: A206074 A325559 A257688 * A257691 A372059 A164574
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 07 2015
STATUS
approved