login
A256889
Numbers k such that the decimal expansions of both k and k^2 have 1 as smallest digit and 5 as largest digit.
20
115, 1115, 1235, 3515, 11115, 12335, 12415, 33515, 35415, 123335, 123512, 124235, 145415, 152132, 231115, 235211, 333515, 1114115, 1155211, 1233335, 1531115, 1534312, 2311115, 3333515, 11114115, 11141115, 11145511, 12333335, 12342335, 15334312, 15531115
OFFSET
1,1
COMMENTS
k can only begin with 1, 2 or 3 and k mod 10 can only equal 1, 2 or 5. - Robert G. Wilson v, Apr 13 2015
Heuristics suggest that this sequence should be infinite and the sequence with 4 in place of 5 should be finite. The latter sequence contains no terms up to 10^30. - Charles R Greathouse IV, Mar 20 2022
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..2000 (n = 1..75 from Robert G. Wilson v).
MATHEMATICA
fQ[n_] := Block[{c = DigitCount@ n}, And[Plus @@ Take[c, {6, 10}] == 0, c[[1]] > 0, c[[5]] > 0]]; Select[Range@ 100000, fQ@ # && fQ[#^2] &] (* Michael De Vlieger, Apr 12 2015 *)
fQ[n_] := Block[{id1 = Union@ IntegerDigits[ n], id2 = Union@ IntegerDigits[ n^2]}, Min[id1] == Min[id2] == 1 && Max[id1] == Max[id2] == 5]; k = 1; lst = {}; While[k < 10^7, If[ fQ@ k, AppendTo[lst, k]]; k++; If[ fQ@ k, AppendTo[lst, k]]; k += 3; If[ fQ@ k, AppendTo[lst, k]]; k += 6]; lst (* Robert G. Wilson v, Apr 13 2015 *)
PROG
(PARI) is(n) = vecmin(digits(n))==1 && vecmin(digits(n^2))==1 && vecmax(digits(n))==5 && vecmax(digits(n^2))==5
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Felix Fröhlich, Apr 12 2015
STATUS
approved