login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256891 Smallest primes of 3 X 3 magic squares formed from consecutive primes. 10
1480028129, 1850590057, 5196185947, 5601567187, 5757284497, 6048371029, 6151077269, 9517122259, 19052235847, 20477868319, 23813359613, 24026890159, 26748150199, 28519991387, 34821326119, 44420969909, 49285771679, 73827799009, 73974781889, 74220519319, 76483907837, 76560277009, 80143089599, 85892025227, 89132925737, 95515449037, 99977424653 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For a given magic sum S, it is easy to calculate the unique set of n^2 consecutive primes that sum up to n*S (see PROGRAM MagicPrimes() in A073519), and in particular the smallest of these (cf. PROGRAM), listed here for n = 3, in A260673 for n = 4, in A272386 for n = 5, and in A272387 for n = 6. - M. F. Hasler, Oct 28 2018

REFERENCES

Allan W. Johnson, Jr., Consecutive-Prime Magic Squares, Journal of Recreational Mathematics, vol. 15, 1982-83, pp. 17-18.

H. L. Nelson, A Consecutive Prime 3 x 3 Magic Square, Journal of Recreational Mathematics, vol. 20:3, 1988, p. 214.

LINKS

Table of n, a(n) for n=1..27.

Harvey D. Heinz, Prime Numbers Magic Squares: Minimum consecutive primes - 3, 1999-2010.

Eric Weisstein's World of Mathematics, Prime Magic Square

Index entries for sequences related to magic squares

FORMULA

a(n) = A151799(A151799(A151799(A151799( A166113(n) )))). - Max Alekseyev, Nov 02 2015

EXAMPLE

Let a = a(n) for some n and {a, b, c, d, e, f, g, h, i} be the set of consecutive primes. Then it is:

|---|---|---|

| d | c | h |

|---|---|---|

| i | e | a |

|---|---|---|

| b | g | f |

|---|---|---|

PROG

(MAGMA) /* Brute-force search */ lst:=[]; n:=3; while n lt 10^11 do a:=NextPrime(n); q:=a; j:=a-n; if j mod 6 eq 0 then b:=NextPrime(a); if j eq b-a then c:=NextPrime(b); d:=c-b; if d mod 6 eq 0 then e:=NextPrime(c); k:=e-c; if k eq j then f:=NextPrime(e); if k eq f-e then g:=NextPrime(f); if g-f eq d then h:=NextPrime(g); m:=h-g; if m eq k then i:=NextPrime(h); if h-g eq i-h then Append(~lst, n); end if; end if; end if; end if; end if; end if; end if; end if; n:=q; end while; lst;

(PARI) A256891(n)=MagicPrimes(A270305(n), 3)[1] \\ See A073519 for MagicPrimes(). - M. F. Hasler, Oct 28 2018

CROSSREFS

Cf. A073519, A151799, A166113, A260673, A272386, A272387. Subsequence of A265139.

Sequence in context: A165736 A048051 A073519 * A320873 A166113 A157816

Adjacent sequences:  A256888 A256889 A256890 * A256892 A256893 A256894

KEYWORD

nonn

AUTHOR

Arkadiusz Wesolowski, Apr 12 2015

EXTENSIONS

Extended by Max Alekseyev, Nov 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 10:05 EDT 2019. Contains 326149 sequences. (Running on oeis4.)