This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255984 Decimal expansion of sqrt(3*Pi/2), the value of an oscillatory integral. 1
 2, 1, 7, 0, 8, 0, 3, 7, 6, 3, 6, 7, 4, 8, 0, 2, 9, 7, 8, 0, 8, 9, 0, 4, 3, 8, 8, 1, 8, 7, 2, 3, 8, 7, 3, 0, 3, 6, 1, 6, 3, 2, 6, 6, 8, 4, 3, 5, 3, 6, 3, 7, 7, 8, 0, 9, 2, 8, 6, 3, 6, 9, 8, 3, 3, 1, 1, 1, 0, 4, 6, 1, 5, 8, 5, 8, 8, 8, 7, 1, 8, 5, 7, 5, 0, 3, 4, 8, 8, 4, 4, 7, 0, 4, 3, 4, 6, 5, 4, 1, 2, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 David H. Bailey and Jonathan M. Borwein, Experimental computation with oscillatory integrals. FORMULA Limit_{p -> infinity} (integral_{0..infinity} abs(sin(t)/t)^p dt) = sqrt(3*Pi/2). EXAMPLE 2.17080376367480297808904388187238730361632668435363778... MAPLE evalf[120](sqrt(3*Pi/2)); # Muniru A Asiru, Mar 01 2019 MATHEMATICA RealDigits[Sqrt[3*Pi/2], 10, 103]//First PROG (PARI) sqrt(3*Pi/2) \\ Charles R Greathouse IV, Apr 20 2016 (MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(3*Pi(R)/2); // G. C. Greubel, Feb 28 2019 (Sage) numerical_approx(sqrt(3*pi/2), digits=100) # G. C. Greubel, Feb 28 2019 CROSSREFS Cf. A197723 (3*Pi/2). Sequence in context: A300911 A103114 A004561 * A199458 A287480 A287755 Adjacent sequences:  A255981 A255982 A255983 * A255985 A255986 A255987 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Mar 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 19:44 EDT 2019. Contains 328128 sequences. (Running on oeis4.)