login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255982 Number T(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 16
1, 0, 1, 0, 2, 4, 0, 5, 29, 30, 0, 14, 184, 486, 336, 0, 42, 1148, 5880, 9744, 5040, 0, 132, 7228, 64464, 192984, 230400, 95040, 0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160, 0, 1430, 300476, 7043814, 51622600, 165293700, 259518600, 196756560, 57657600 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Alois P. Heinz, Rows n = 0..135, flattened

FORMULA

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A237018(n,k-i).

EXAMPLE

A(3,1) = 5:

[||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].

.

A(2,2) = 4:

._______.  ._______.  ._______.  ._______.

|   |   |  |   |   |  |   |   |  |       |

|___|   |  |   |___|  |___|___|  |_______|

|   |   |  |   |   |  |       |  |   |   |

|___|___|  |___|___|  |_______|  |___|___|.

.

Triangle T(n,k) begins:

1

0,   1;

0,   2,     4;

0,   5,    29,     30;

0,  14,   184,    486,     336;

0,  42,  1148,   5880,    9744,    5040;

0, 132,  7228,  64464,  192984,  230400,   95040;

0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160;

MAPLE

b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,

       A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))

    end:

A:= proc(n, k) option remember; `if`(n=0, 1,

      -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))

    end:

T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):

seq(seq(T(n, k), k=0..n), n=0..10);

MATHEMATICA

b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 0, 1, A[n-1, k], Sum[ A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-Fran├žois Alcover, Feb 20 2016, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000007, A000108 (for n>0), A258416, A258417, A258418, A258419, A258420, A258421, A258422, A258423, A258424.

Main diagonal gives A001761.

Row sums give A258425.

T(2n,n) give A258426.

Cf. A237018, A256061, A258427.

Sequence in context: A144810 A269011 A274086 * A256061 A002652 A202541

Adjacent sequences:  A255979 A255980 A255981 * A255983 A255984 A255985

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Mar 13 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 07:18 EST 2018. Contains 299390 sequences. (Running on oeis4.)