login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255821
Numbers of words on {0,1,...,36} having no isolated zeros.
1
1, 36, 1297, 46729, 1683577, 60656797, 2185374961, 78735837637, 2836736138665, 102203420474269, 3682238546710945, 132665625592223221, 4779746882367738841, 172207232713967895181, 6204372685172893559377, 223534399861459456068709
OFFSET
0,2
COMMENTS
The number p_n = a(n)/37^n equals the probability that in n trials in single zero (European) Roulette zero will not appear isolated. For example, p_10 is approximately 0.021.
FORMULA
G.f.: -(x^2 - x + 1)/(36*x^3 - 36*x^2 + 37*x - 1). - Colin Barker, Mar 09 2015
a(n) = 37*a(n-1) - 36*a(n-2) + 36*a(n-3). - G. C. Greubel, Jun 02 2016
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 36, a[2]== 1297, a[n] == 37 a[n - 1] - 36 a[n - 2] + 36 a[n - 3]}, a[n], {n, 0, 15}]
LinearRecurrence[{37, -36, 36}, {1, 36, 1297}, 100] (* G. C. Greubel, Jun 02 2016 *)
PROG
(PARI) Vec(-(x^2-x+1)/(36*x^3-36*x^2+37*x-1) + O(x^100)) \\ Colin Barker, Mar 09 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Mar 07 2015
STATUS
approved