OFFSET
0,2
COMMENTS
The number p_n = a(n)/37^n equals the probability that in n trials in single zero (European) Roulette zero will not appear isolated. For example, p_10 is approximately 0.021.
LINKS
Colin Barker, Table of n, a(n) for n = 0..642
Index entries for linear recurrences with constant coefficients, signature (37,-36,36).
FORMULA
G.f.: -(x^2 - x + 1)/(36*x^3 - 36*x^2 + 37*x - 1). - Colin Barker, Mar 09 2015
a(n) = 37*a(n-1) - 36*a(n-2) + 36*a(n-3). - G. C. Greubel, Jun 02 2016
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 36, a[2]== 1297, a[n] == 37 a[n - 1] - 36 a[n - 2] + 36 a[n - 3]}, a[n], {n, 0, 15}]
LinearRecurrence[{37, -36, 36}, {1, 36, 1297}, 100] (* G. C. Greubel, Jun 02 2016 *)
PROG
(PARI) Vec(-(x^2-x+1)/(36*x^3-36*x^2+37*x-1) + O(x^100)) \\ Colin Barker, Mar 09 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Mar 07 2015
STATUS
approved