|
|
A041613
|
|
Denominators of continued fraction convergents to sqrt(325).
|
|
4
|
|
|
1, 36, 1297, 46728, 1683505, 60652908, 2185188193, 78727427856, 2836372591009, 102188140704180, 3681609437941489, 132640127906597784, 4778726214075461713, 172166783834623219452, 6202782944260511361985, 223472352777213032250912
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (36,1).
|
|
FORMULA
|
a(n) = F(n, 36), the n-th Fibonacci polynomial evaluated at x=36. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 36*a(n-1)+a(n-2) for n > 1; a(0)=1, a(1)=36.
G.f.: 1/(1 - 36*x - x^2). (End)
|
|
MAPLE
|
with (combinat):seq(fibonacci(3*n, 3)/10, n=1..15); # Zerinvary Lajos, Apr 20 2008
|
|
MATHEMATICA
|
a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*36, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)
Denominator[Convergents[Sqrt[325], 30]] (* Vincenzo Librandi Dec 21 2013 *)
|
|
CROSSREFS
|
Cf. A041612, A040306.
Sequence in context: A224011 A300357 A009980 * A255821 A209042 A283729
Adjacent sequences: A041610 A041611 A041612 * A041614 A041615 A041616
|
|
KEYWORD
|
nonn,frac,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Colin Barker, Nov 20 2013
|
|
STATUS
|
approved
|
|
|
|