login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041613 Denominators of continued fraction convergents to sqrt(325). 4
1, 36, 1297, 46728, 1683505, 60652908, 2185188193, 78727427856, 2836372591009, 102188140704180, 3681609437941489, 132640127906597784, 4778726214075461713, 172166783834623219452, 6202782944260511361985, 223472352777213032250912 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (36,1).

FORMULA

a(n) = F(n, 36), the n-th Fibonacci polynomial evaluated at x=36. - T. D. Noe, Jan 19 2006

From Philippe Deléham, Nov 23 2008: (Start)

a(n) = 36*a(n-1)+a(n-2) for n > 1; a(0)=1, a(1)=36.

G.f.: 1/(1 - 36*x - x^2). (End)

MAPLE

with (combinat):seq(fibonacci(3*n, 3)/10, n=1..15); # Zerinvary Lajos, Apr 20 2008

MATHEMATICA

a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*36, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)

Denominator[Convergents[Sqrt[325], 30]] (* Vincenzo Librandi Dec 21 2013 *)

CROSSREFS

Cf. A041612, A040306.

Sequence in context: A224011 A300357 A009980 * A255821 A209042 A283729

Adjacent sequences:  A041610 A041611 A041612 * A041614 A041615 A041616

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Colin Barker, Nov 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)