login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A255115
Number of n-length words on {0,1,2} in which 0 appears only in runs of length 2.
5
1, 2, 5, 12, 28, 66, 156, 368, 868, 2048, 4832, 11400, 26896, 63456, 149712, 353216, 833344, 1966112, 4638656, 10944000, 25820224, 60917760, 143723520, 339087488, 800010496, 1887468032, 4453111040, 10506243072, 24787422208, 58481066496, 137974619136
OFFSET
0,2
COMMENTS
Apparently a(n) = A239333(n).
LINKS
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 10.
FORMULA
a(n+3) = 2*a(n+2) + 2*a(n) with n>1, a(0) = 1, a(1) = 2, a(2)=5.
G.f.: -(x^2+1) / (2*x^3+2*x-1). - Colin Barker, Feb 15 2015
a(n) = A052912(n)+A052912(n-2). - R. J. Mathar, Jun 18 2015
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 2, a[2]== 5, a[n] == 2 a[n - 1] + 2 a[n - 3]}, a[n], {n, 0, 29}]
PROG
(PARI) Vec(-(x^2+1)/(2*x^3+2*x-1) + O(x^100)) \\ Colin Barker, Feb 15 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 14 2015
STATUS
approved