login
A255114
Number of length n+7 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.
1
6561, 14849, 19338, 23463, 29147, 38010, 49611, 63075, 78552, 96210, 116236, 138837, 164241, 192698, 224481, 259887, 299238, 342882, 391194, 444577, 503463, 568314, 639623, 717915, 803748, 897714, 1000440, 1112589, 1234861, 1367994
OFFSET
1,1
COMMENTS
Row 7 of A255107.
LINKS
FORMULA
Empirical: a(n) = (1/120)*n^5 + (5/12)*n^4 + (187/24)*n^3 + (7393/12)*n^2 + (20667/10)*n + 1143 for n>5.
Empirical g.f.: x*(6561 - 24517*x + 28659*x^2 - 1050*x^3 - 20126*x^4 + 11682*x^5 - 2967*x^6 + 3385*x^7 - 168*x^8 - 2466*x^9 + 1008*x^10) / (1 - x)^6. - Colin Barker, Jan 24 2018
EXAMPLE
Some solutions for n=4:
..0....0....1....1....1....1....0....0....0....2....1....2....2....2....0....2
..1....0....0....1....1....1....1....1....1....0....0....0....0....2....1....0
..1....2....0....1....0....1....1....2....1....0....0....2....0....0....0....0
..1....2....2....1....1....1....1....0....1....0....0....2....0....0....0....1
..2....0....2....0....1....0....0....2....2....1....1....2....0....1....2....1
..1....0....1....2....1....1....0....2....0....2....1....2....1....2....2....0
..1....0....1....2....2....1....1....2....0....0....2....0....2....2....2....0
..1....0....2....2....2....1....1....0....1....0....0....0....0....2....2....0
..1....2....2....0....0....0....2....0....1....1....2....1....0....2....0....1
..0....0....2....1....2....2....0....0....1....2....2....1....0....1....0....2
..2....1....2....2....2....2....1....0....2....0....2....0....2....1....0....2
CROSSREFS
Cf. A255107.
Sequence in context: A043488 A046321 A043456 * A255629 A017080 A017164
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 14 2015
STATUS
approved