login
A255097
Number of (n+2)X(4+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 1 and no row sum 1 and no column sum 1
1
419, 1475, 6110, 25413, 106848, 454332, 1933924, 8248373, 35227773, 150417081, 642360601, 2744199183, 11723677708, 50083292461, 213960360261, 914078793470, 3905115873457, 16683360703840, 71274426314113, 304497975802593
OFFSET
1,1
COMMENTS
Column 4 of A255101
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) -4*a(n-2) +14*a(n-3) -23*a(n-4) -91*a(n-5) -13*a(n-6) -118*a(n-7) +815*a(n-8) +1080*a(n-9) -692*a(n-10) -2103*a(n-11) -5420*a(n-12) +2379*a(n-13) +8473*a(n-14) +4179*a(n-15) +8147*a(n-16) -18588*a(n-17) -30186*a(n-18) +2771*a(n-19) +28308*a(n-20) +32734*a(n-21) +6559*a(n-22) -23299*a(n-23) -16727*a(n-24) -666*a(n-25) +7553*a(n-26) -5973*a(n-27) -14481*a(n-28) +7873*a(n-29) +34754*a(n-30) +25934*a(n-31) -15978*a(n-32) -45920*a(n-33) -43974*a(n-34) -14735*a(n-35) +6402*a(n-36) +15091*a(n-37) +14803*a(n-38) +11460*a(n-39) +9120*a(n-40) +5581*a(n-41) +3303*a(n-42) +1366*a(n-43) +342*a(n-44) +18*a(n-45) -72*a(n-46) for n>50
EXAMPLE
Some solutions for n=4
..1..1..1..1..0..1....1..1..1..1..1..0....1..1..1..0..1..1....0..1..1..1..1..1
..1..1..1..0..1..1....0..1..1..1..1..1....1..0..1..1..1..1....1..1..1..1..1..1
..1..1..0..1..1..1....1..1..1..1..1..1....1..1..1..1..0..1....1..1..1..1..0..1
..1..0..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1
..0..1..1..1..1..1....1..1..0..1..1..0....0..1..1..1..1..1....0..1..1..1..1..0
..1..1..0..1..1..0....0..1..1..1..0..1....1..1..1..1..1..1....1..1..1..0..1..1
CROSSREFS
Sequence in context: A142733 A364359 A060230 * A130737 A242326 A298699
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 14 2015
STATUS
approved