login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130737 Primes p such that p+2, p*(p+2)+18 and p*(p+2)+20 are also prime. 2
419, 2309, 16631, 17387, 17597, 22637, 32297, 49937, 51239, 61151, 66947, 122387, 124907, 136751, 148721, 148931, 152459, 182027, 183917, 189251, 203909, 209579, 228521, 246707, 251789, 291689, 324617, 371027, 388961, 408701, 409289 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

MAPLE

a:=proc(n)local p: p:=ithprime(n): if isprime(p+2)=true and isprime(p*(p+2)+18)=true and isprime(p*(p+2)+20)=true then p else end if end proc: seq(a(n), n= 1..40000); # Emeric Deutsch, Jul 28 2007

MATHEMATICA

Select[Prime[Range[60000]], PrimeQ[#+2] && PrimeQ[#*(#+2)+18] && PrimeQ[#*(#+2)+20] &] (* G. C. Greubel, Mar 03 2019 *)

PROG

(PARI) {isok(n) = isprime(n) && isprime(n+2) && isprime(n*(n+2)+18) && isprime(n*(n+2)+20)};

forprime(n=1, 500000, if(isok(n), print1(n", "))) \\ G. C. Greubel, Mar 03 2019

(Magma) [n: n in [1..500000] | IsPrime(n) and IsPrime(n+2) and IsPrime(n*(n+2)+18) and IsPrime(n*(n+2)+20)]; // G. C. Greubel, Mar 03 2019

(Sage) [n for n in (1..500000) if is_prime(n) and is_prime(n+2) and is_prime(n*(n+2)+18) and is_prime(n*(n+2)+20)] # G. C. Greubel, Mar 03 2019

(GAP) Filtered([1..500000], k-> IsPrime(k) and IsPrime(k+2) and IsPrime(k*(k+2)+18) and IsPrime(k*(k+2)+20)) # G. C. Greubel, Mar 03 2019

CROSSREFS

Cf. A001359, A130736.

Sequence in context: A142733 A060230 A255097 * A242326 A298699 A187218

Adjacent sequences: A130734 A130735 A130736 * A130738 A130739 A130740

KEYWORD

nonn

AUTHOR

Ray G. Opao, Jul 06 2007

EXTENSIONS

More terms from Emeric Deutsch, Jul 28 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 2 18:34 EST 2023. Contains 360023 sequences. (Running on oeis4.)