login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254981 a(n) is the sum of the divisors d of n such that n/d is cubefree. 5
1, 3, 4, 7, 6, 12, 8, 14, 13, 18, 12, 28, 14, 24, 24, 28, 18, 39, 20, 42, 32, 36, 24, 56, 31, 42, 39, 56, 30, 72, 32, 56, 48, 54, 48, 91, 38, 60, 56, 84, 42, 96, 44, 84, 78, 72, 48, 112, 57, 93, 72, 98, 54, 117, 72, 112, 80, 90, 60, 168, 62, 96, 104, 112, 84, 144 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Inverse Möbius transform of A254926.

LINKS

Table of n, a(n) for n = 1..10000

FORMULA

a(n) = Sum_{d | n} d * A212793(n/d) = n * Sum_{d | n} A212793(d) / d.

a(n) = Sum_{d^3 | n} mu(d) * A000203(n/d^3).

Multiplicative with a(p) = 1 + p; a(p^e) = p^(e-2) * (1 + p + p^2), for e>1.

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(3s).

If n is powerful, a(n^k) = n^(k-1) * a(n).

For k>1, a(n^k) = n^(k-1) * a(n) * Prod_{p prime, ord(n,p)=1} (p^3-1) / (p^3-p).

Sum_{k=1..n} a(k) ~ 315*n^2 / (4*Pi^4). - Vaclav Kotesovec, Feb 03 2019

MATHEMATICA

nn = 66; f[list_, i_] := list[[i]]; a = Table[If[Max[FactorInteger[n][[All, 2]]] < 3, 1, 0], {n, 1, nn}]; b =Table[n, {n, 1, nn}]; Table[

DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 22 2015 *)

PROG

(PARI) a212793(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 2]) >=3, return(0)); ); return (1); }

a(n) = sumdiv(n, d, d*a212793(n/d)); \\ Michel Marcus, Feb 11 2015

(PARI) a(n) = sumdiv(n, d, if (ispower(d, 3), moebius(sqrtnint(d, 3))*sigma(n/d), 0)); \\ Michel Marcus, Mar 04 2015

CROSSREFS

Cf. A000203, A001615, A001694, A212793, A254926.

Sequence in context: A073183 A049418 A051378 * A116607 A107749 A093811

Adjacent sequences:  A254978 A254979 A254980 * A254982 A254983 A254984

KEYWORD

mult,nonn

AUTHOR

Álvar Ibeas, Feb 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 18:55 EST 2019. Contains 329406 sequences. (Running on oeis4.)