OFFSET
0,1
LINKS
D. H. Bailey, J. M. Borwein and R. E. Crandall, Box Integrals, J. Comp. Appl. Math., Vol. 206, No. 1 (2007), pp. 196-208.
D. H. Bailey, J. M. Borwein, and R. E. Crandall, Advances in the theory of box integrals, Math. Comp. 79 (271) (2010) 1839-1866, Table 2.
Eric Weisstein's MathWorld, Inverse Tangent Integral.
Eric Weisstein's MathWorld, Polylogarithm.
Eric Weisstein's MathWorld, Box Integral.
FORMULA
B_4(-1) = 2*log(3) - (2/3)*Catalan + 2*Ti_2(3-2*sqrt(2)) - sqrt(8) * arctan( 1/sqrt(8) ), where Ti_2(x) = (i/2)*(polylog(2, -i*x) - polylog(2, i*x)) (Ti_2 is the inverse tangent integral function).
EXAMPLE
0.96741202124116589866183643817815839013593700929996...
MATHEMATICA
Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); B4[-1] = 2*Log[3] - (2/3) * Catalan + 2*Ti2[3 - 2*Sqrt[2]] - Sqrt[8]*ArcTan[1/Sqrt[8]] // Re; RealDigits[ B4[-1], 10, 104] // First
PROG
(Python)
from mpmath import *
mp.dps=105
x=3 - 2*sqrt(2)
Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
C = 2*log(3) - (2/3)*catalan + 2*Ti2x - sqrt(8) * atan(1/sqrt(8))
print([int(n) for n in list(str(C.real)[2:-1])]) # Indranil Ghosh, Jul 03 2017
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Feb 11 2015
EXTENSIONS
Name corrected by Amiram Eldar, Jun 04 2023
STATUS
approved