login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254334
Powers of 3 in base 60, concatenating the decimal values of the sexagesimal digits.
5
1, 3, 9, 27, 121, 403, 1209, 3627, 14921, 52803, 162409, 491227, 2273721, 7225203, 22083609, 106254827, 319172521, 957521603, 2953364809, 12940502427, 42902311321, 132707334003, 402122410009, 2010408030027, 6031224090121, 18093712270403, 54285137211209
OFFSET
0,2
COMMENTS
Each sexagesimal digit appears as a pair of decimal digits as on a digital clock. Any leading zeros are truncated. Thus decimal 81 appears as "121" and not "0121".
LINKS
FORMULA
a(n) = A055643(A000244(n)). - Michel Marcus, Mar 02 2015
EXAMPLE
a(6) = 1209, since 3^6 = 729 = 12 * 60^1 + 9, thus 12:09 in clock-like notation, which becomes 1209 when restricted to numeric characters.
MATHEMATICA
f[n_] := FromDigits@ StringJoin[If[# < 10, StringJoin["0", ToString[#]], ToString[#]] & /@ IntegerDigits[3^n, 60]]; Table[f@ i, {i, 0, 26}] (* Michael De Vlieger, Jan 28 2015 *)
PROG
(PARI) a(n) = subst(Pol(digits(3^n, 60)), x, 100); \\ Michel Marcus, Feb 22 2015
(Python)
def digits(n, b=10): # list of digits of n in base b
....x, y = n, []
....while x >= b:
........x, r = divmod(x, b)
........y.append(r)
....y.append(x)
....return list(reversed(y))
A254334_list = [int(''.join([format(x, '02d') for x in digits(3**i, 60)])) for i in range(10**2)]
# Chai Wah Wu, Mar 14 2015
CROSSREFS
Cf. A000244 (Powers of 3), A055643 (Babylonian numbers).
Cf. Sexagesimal representations: A250073 (Powers of 2), A254335 (Powers of 5), A254336 (Powers of 10).
Sequence in context: A323927 A146151 A306681 * A375093 A028855 A299597
KEYWORD
nonn,base
AUTHOR
Michael De Vlieger, Jan 28 2015
STATUS
approved