The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254135 Decimal expansion of Lamb's integral K_2. 2
 6, 9, 2, 6, 6, 0, 8, 1, 5, 1, 5, 2, 6, 4, 7, 5, 0, 6, 5, 0, 9, 4, 3, 1, 1, 8, 5, 8, 8, 4, 2, 7, 2, 4, 5, 8, 4, 6, 7, 1, 3, 4, 8, 3, 2, 8, 0, 7, 6, 6, 8, 8, 4, 2, 5, 8, 0, 7, 2, 0, 4, 5, 6, 9, 7, 1, 4, 9, 0, 6, 3, 0, 2, 1, 6, 3, 0, 0, 7, 0, 5, 2, 1, 4, 3, 3, 9, 1, 1, 7, 7, 2, 8, 2, 0, 4, 4, 2, 8, 6, 8, 3, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS D. H. Bailey, J. M. Borwein, R. E. Crandall, Advances in the theory of box integrals (2010) p. 18. Eric Weisstein MathWorld, InverseTangentIntegral FORMULA K_2 = integral_[0..Pi/4] sqrt(1 + sec(x)^2)*arctan(1/sqrt(1 + sec(x)^2)) dx. K_2 = (1/2)*Ti_2(-2 + sqrt(3)) + (Pi/8)*log(2 + sqrt(3)) + Pi^2/32, where Ti_2 is Lewin's arctan integral, Ti_2(x) = (i/2)*(Li_2(-i*x) - Li_2(i*x)). EXAMPLE 0.69266081515264750650943118588427245846713483280766884258... MAPLE evalf(int(sqrt(1 + sec(x)^2)*arctan(1/sqrt(1 + sec(x)^2)), x=0..Pi/4), 120); # Vaclav Kotesovec, Jan 26 2015 MATHEMATICA Ti2[x_] := (I/2)* (PolyLog[2, -I *x] - PolyLog[2, I *x]); K2 = (1/2)*Ti2[-2 + Sqrt[3]] + (Pi/8)*Log[2 + Sqrt[3]] + Pi^2/32 // Re; RealDigits[K2, 10, 103] // First CROSSREFS Cf. A244920, A244921, A244922, A254133, A254134. Sequence in context: A309819 A309825 A289503 * A198676 A198616 A215668 Adjacent sequences:  A254132 A254133 A254134 * A254136 A254137 A254138 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jan 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 05:01 EST 2020. Contains 332353 sequences. (Running on oeis4.)