login
A309825
Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/7).
4
1, 6, 9, 2, 4, 8, 8, 2, 9, 9, 4, 6, 9, 7, 6, 9, 8, 5, 3, 1, 4, 8, 8, 1, 6, 4, 8, 4, 5, 6, 4, 2, 0, 2, 7, 9, 8, 7, 5, 9, 7, 8, 7, 9, 8, 6, 5, 0, 8, 4, 5, 1, 4, 6, 8, 0, 2, 5, 0, 8, 8, 9, 4, 8, 1, 3, 5, 2, 3, 6, 0, 8, 6, 8, 2, 0, 3, 3, 5, 6, 5, 1, 8, 8, 5, 5, 3, 4, 8, 5, 0, 7, 6, 6, 8, 5, 7, 8, 0, 9
OFFSET
0,2
COMMENTS
x = ...024654846188413589679649928842961.
x^7 = ...123456789876543212345678987654321.
LINKS
EXAMPLE
1^7 == 1 (mod 10).
61^7 == 21 (mod 10^2).
961^7 == 321 (mod 10^3).
2961^7 == 4321 (mod 10^4).
42961^7 == 54321 (mod 10^5).
842961^7 == 654321 (mod 10^6).
8842961^7 == 7654321 (mod 10^7).
28842961^7 == 87654321 (mod 10^8).
928842961^7 == 987654321 (mod 10^9).
9928842961^7 == 8987654321 (mod 10^10).
49928842961^7 == 78987654321 (mod 10^11).
649928842961^7 == 678987654321 (mod 10^12).
9649928842961^7 == 5678987654321 (mod 10^13).
79649928842961^7 == 45678987654321 (mod 10^14).
679649928842961^7 == 345678987654321 (mod 10^15).
9679649928842961^7 == 2345678987654321 (mod 10^16).
89679649928842961^7 == 12345678987654321 (mod 10^17).
PROG
(PARI) N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/7), 2^N), Mod((M+O(5^N))^(1/7), 5^N)))), N)
CROSSREFS
Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/k): A309824 (k=3), this sequence (k=7), A309826 (k=9).
Cf. A309819.
Sequence in context: A087016 A161480 A309819 * A289503 A349522 A254135
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 18 2019
STATUS
approved