OFFSET
1,2
COMMENTS
Also nonnegative integers y in the solutions to 6*x^2-y^2+2*x-2*y = 0, the corresponding values of x being A220755.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,98,-98,-1,1).
FORMULA
a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5).
G.f.: -2*x^2*(3*x^3+11*x^2+33*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)).
EXAMPLE
68 is in the sequence because T(68)+T(69) = 2346+2415 = 4761 = 2296+2465 = N(28)+N(29).
PROG
(PARI) concat(0, Vec(-2*x^2*(3*x^3+11*x^2+33*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 09 2014
STATUS
approved