%I #49 Nov 17 2020 04:44:34
%S 1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,2,1,1,4,3,1,1,2,1,2,1,3,3,1,1,1,4,3,1,
%T 1,4,3,1,2,1,2,1,1,6,9,4,1,1,1,2,1,2,1,1,4,3,1,1,6,6,1,1,4,6,4,1,1,2,
%U 1,2,1,2,1,7,12,6,1,1,2,1,2,1,6,9,4
%N Irregular triangular array: T(n,k) is the number of ordered factorizations of n with exactly k factors, n >= 1, 1 <= k <= A086436(n).
%C Row sums = A074206.
%C Row lengths give A086436.
%C T(n,2) = A070824(n).
%C T(n,3) = A200221(n).
%C Sum_{k>=1} k*T(n,k) = A254577.
%C For all n > 1, Sum_{k=1..A086436(n)} (-1)^k*T(n,k) = A008683(n). - _Geoffrey Critzer_, May 25 2018
%C From _Gus Wiseman_, Aug 21 2020: (Start)
%C Also the number of strict length k + 1 chains of divisors from n to 1. For example, row n = 24 counts the following chains:
%C 24/1 24/2/1 24/4/2/1 24/8/4/2/1
%C 24/3/1 24/6/2/1 24/12/4/2/1
%C 24/4/1 24/6/3/1 24/12/6/2/1
%C 24/6/1 24/8/2/1 24/12/6/3/1
%C 24/8/1 24/8/4/1
%C 24/12/1 24/12/2/1
%C 24/12/3/1
%C 24/12/4/1
%C 24/12/6/1
%C (End)
%H Alois P. Heinz, <a href="/A251683/b251683.txt">Rows n = 1..4000, flattened</a>
%H Jeffery Kline, <a href="https://doi.org/10.1016/j.laa.2019.09.022">On the eigenstructure of sparse matrices related to the prime number theorem</a>, Linear Algebra and its Applications (2020) Vol. 584, 409-430.
%H Arnold Knopfmacher and Michael Mays, <a href="https://www.researchgate.net/publication/255662882_Ordered_and_Unordered_Factorizations_of_Integers">Ordered and Unordered Factorizations of Integers</a>, The Mathematica Journal, Vol 10 (1).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OrderedFactorization.html">Ordered Factorization</a>
%F Dirichlet g.f.: 1/(1 - y*(zeta(x)-1)).
%e Triangle T(n,k) begins:
%e 1;
%e 1;
%e 1;
%e 1, 1;
%e 1;
%e 1, 2;
%e 1;
%e 1, 2, 1;
%e 1, 1;
%e 1, 2;
%e 1;
%e 1, 4, 3;
%e 1;
%e 1, 2;
%e 1, 2;
%e ...
%e There are 8 ordered factorizations of the integer 12: 12, 6*2, 4*3, 3*4, 2*6, 3*2*2, 2*3*2, 2*2*3. So T(12,1)=1, T(12,2)=4, and T(12,3)=3.
%p with(numtheory):
%p b:= proc(n) option remember; expand(x*(1+
%p add(b(n/d), d=divisors(n) minus {1, n})))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
%p seq(T(n), n=1..100); # _Alois P. Heinz_, Dec 07 2014
%t f[1] = {{}};
%t f[n_] := f[n] =
%t Level[Table[
%t Map[Prepend[#, d] &, f[n/d]], {d, Rest[Divisors[n]]}], {2}];
%t Prepend[Map[Select[#, # > 0 &] &,
%t Drop[Transpose[
%t Table[Map[Count[#, k] &,
%t Map[Length, Table[f[n], {n, 1, 40}], {2}]], {k, 1, 10}]],
%t 1]],{1}] // Grid
%t (* Second program: *)
%t b[n_] := b[n] = x(1+Sum[b[n/d], {d, Divisors[n]~Complement~{1, n}}]);
%t T[n_] := CoefficientList[b[n]/x, x];
%t Array[T, 100] // Flatten (* _Jean-François Alcover_, Nov 17 2020, after _Alois P. Heinz_ *)
%Y Cf. A008683, A070824, A200221, A254577.
%Y A008480 gives rows ends.
%Y A086436 gives row lengths.
%Y A124433 is the same except for signs and zeros.
%Y A334996 is the same except for zeros.
%Y A337107 is the restriction to factorial numbers (but with zeros).
%Y A000005 counts divisors.
%Y A001055 counts factorizations.
%Y A001222 counts prime factors with multiplicity.
%Y A074206 counts strict chains of divisors from n to 1.
%Y A067824 counts strict chains of divisors starting with n.
%Y A122651 counts strict chains of divisors summing to n.
%Y A167865 counts strict chains of divisors > 1 summing to n.
%Y A253249 counts strict nonempty chains of divisors of n.
%Y A337071 counts strict chains of divisors starting with n!.
%Y A337256 counts strict chains of divisors of n.
%Y Cf. A001221, A002033, A124010, A167865, A337070, A337105.
%K nonn,tabf
%O 1,8
%A _Geoffrey Critzer_, Dec 06 2014