This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251555 a(1)=1, a(2)=3, a(3)=2; thereafter a(n) is the smallest number not occurring earlier having at least one common factor with a(n-2), but none with a(n-1). 5
 1, 3, 2, 9, 4, 15, 8, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27, 14, 33, 26, 11, 13, 22, 39, 28, 45, 32, 51, 38, 17, 18, 85, 24, 55, 34, 65, 36, 91, 30, 49, 40, 63, 44, 57, 46, 19, 23, 76, 69, 50, 81, 52, 75, 56, 87, 62, 29, 31, 58, 93, 64, 99, 68, 77, 48, 119, 54, 133, 60, 161, 66, 115, 42, 95, 72, 125 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A variant of A098550. See that entry for much more information. It seems likely that this sequence will never merge with A098550, but it would be nice to have a proof. A252912 gives numbers m, such that a(m) = A098550(m), see also A252939 and A252940. - Reinhard Zumkeller, Dec 25 2014 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and J. Int. Seq. 18 (2015) 15.6.7. MATHEMATICA a[1]=1; a[2]=3; a[3]=2; A251555 = Array[a, 3]; a[n_] := a[n] = For[k=2, True, k++, If[FreeQ[A251555, k], If[!CoprimeQ[k, a[n-2]] && CoprimeQ[k, a[n-1]], AppendTo[A251555, k]; Return[k]]]]; A251555 = Array[a, 100] (* Jean-François Alcover, Aug 02 2018 *) PROG (Python) from fractions import gcd A251555_list, l1, l2, s, b = [1, 3, 2], 2, 3, 4, set() for _ in range(10**4): ....i = s ....while True: ........if not i in b and gcd(i, l1) == 1 and gcd(i, l2) > 1: ............A251555_list.append(i) ............l2, l1 = l1, i ............b.add(i) ............while s in b: ................b.remove(s) ................s += 1 ............break ........i += 1 # Chai Wah Wu, Dec 21 2014 (Haskell) import Data.List (delete) a251555 n = a251555_list !! (n-1) a251555_list = 1 : 3 : 2 : f 3 2 [4..] where    f u v ws = g ws where      g (x:xs) = if gcd x u > 1 && gcd x v == 1                    then x : f v x (delete x ws) else g xs -- Reinhard Zumkeller, Dec 24 2014 CROSSREFS Cf. A098550, A251554. Cf. A252912, A252939, A252940. Sequence in context: A178774 A266636 A182652 * A090880 A258439 A188926 Adjacent sequences:  A251552 A251553 A251554 * A251556 A251557 A251558 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 19:41 EDT 2018. Contains 313896 sequences. (Running on oeis4.)