login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251546 a(n) = smallest even number not in {A098550(1), A098550(2), ..., A098550(n)}. 12
2, 4, 4, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 24, 24, 30, 30, 30, 30, 30, 30, 38, 38, 40, 40, 40, 40, 40, 40, 40, 46, 46, 46, 46, 46, 46, 46, 46, 54, 54, 54 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A251416(n) = Min{a(n), A251549(n)}. - Reinhard Zumkeller, Dec 19 2014

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000

David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and J. Int. Seq. 18 (2015) 15.6.7.

MATHEMATICA

terms = 100;

f[lst_List] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];

A098550 = Nest[f, {1, 2, 3}, terms - 3];

a[1] = 2;

a[n_] := a[n] = For[k = a[n-1], True, k += 2, If[FreeQ[A098550[[1;; n]], k], Return[k]]];

Array[a, terms] (* Jean-Fran├žois Alcover, Aug 01 2018, after Robert G. Wilson v *)

PROG

(Haskell)

import Data.List ((\\))

a251546 n = head $ [2, 4 ..] \\ filter even (take n a098550_list)

-- Reinhard Zumkeller, Dec 19 2014

CROSSREFS

Cf. A098550, A247253, A251416, A251417, A251547, A251548, A251549, A251550, A251551, A251552.

See also A251557, A251558, A251559.

Sequence in context: A074325 A058249 A058043 * A282894 A162550 A191682

Adjacent sequences:  A251543 A251544 A251545 * A251547 A251548 A251549

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 19:41 EDT 2018. Contains 313896 sequences. (Running on oeis4.)