OFFSET
1,1
COMMENTS
4, 9, and 25 are squares. It appears that all the remaining terms are the products of two distinct primes, usually both odd. (But not all such numbers occur, of course.)
It would be nice to have a characterization of these numbers that is independent of A098550.
LINKS
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.
MATHEMATICA
terms = 56;
max = 15 terms;
f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
A098550 = Nest[f, {1, 2, 3}, max - 3];
sel = Select[Transpose[{Range[max], A098550}], PrimeQ[#[[2]]]&][[All, 1]]+2;
Sort[A098550[[sel]]][[1 ;; terms]] (* Jean-François Alcover, Sep 05 2018, after Robert G. Wilson v in A098550 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
David Applegate and N. J. A. Sloane, Dec 16 2014
STATUS
approved