login
A250337
Number of length 1+5 0..n arrays with every six consecutive terms having the maximum of some three terms equal to the minimum of the remaining three terms.
1
44, 429, 2056, 6785, 17796, 39949, 80144, 147681, 254620, 416141, 650904, 981409, 1434356, 2041005, 2837536, 3865409, 5171724, 6809581, 8838440, 11324481, 14340964, 17968589, 22295856, 27419425, 33444476, 40485069, 48664504, 58115681
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*n^5 + 10*n^4 + 15*n^3 + 11*n^2 + 4*n + 1.
Conjectures from Colin Barker, Nov 12 2018: (Start)
G.f.: x*(44 + 165*x + 142*x^2 + 4*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=6:
..2....6....4....6....3....2....0....3....0....5....4....2....3....6....5....4
..3....3....2....2....0....3....5....1....6....3....1....1....6....1....3....5
..3....6....6....3....3....3....0....6....0....3....2....5....4....5....2....6
..1....5....0....5....1....0....4....1....0....2....2....2....1....4....4....1
..6....5....4....0....0....6....4....3....6....2....1....2....5....4....4....4
..6....0....6....3....1....5....5....5....0....4....2....5....4....4....6....1
CROSSREFS
Row 1 of A250336.
Sequence in context: A264555 A231217 A250336 * A002613 A094201 A210426
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 19 2014
STATUS
approved