OFFSET
1,1
COMMENTS
Table starts
...44....429.....2056......6785.....17796......39949.......80144......147681
...68....907.....5264.....20085.....59396.....147903......325312......651369
..108...1989....14040.....62041....206724.....569693.....1369136.....2966769
..172...4409....37824....193437....725596....2210213.....5794496....13561449
..272...9771...101264....596245...2506320....8403783....23943648....60312393
..424..21523...266448...1789193...8357144...30606683....94080768...253309665
..648..46941...682576...5156313..26422104..104374957...341862816...971811153
..996.103647..1775840..15207653..86279700..371391819..1310493568..3979387305
.1544.231359..4688592..45754029.288823480.1360791587..5193605728.16905033465
.2404.519971.12466400.138814961.976092436.5038261323.20813768640.72664579185
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..2035
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) +2*a(n-6) -2*a(n-9) -a(n-10) -a(n-12) +a(n-15)
k=2: [order 70]
Empirical for row n:
n=1: a(n) = 3*n^5 + 10*n^4 + 15*n^3 + 11*n^2 + 4*n + 1
n=2: a(n) = n^6 + 9*n^5 + 20*n^4 + (68/3)*n^3 + 12*n^2 + (7/3)*n + 1
n=3: [polynomial of degree 7]
n=4: [polynomial of degree 8]
n=5: [polynomial of degree 9]
n=6: [polynomial of degree 9]
n=7: [polynomial of degree 9]
EXAMPLE
Some solutions for n=4 k=4
..0....0....0....2....0....1....0....0....1....0....0....2....0....0....0....0
..3....1....1....0....2....4....4....1....4....4....3....2....1....1....0....1
..4....3....3....0....3....1....1....2....0....2....3....2....2....0....0....4
..3....3....4....2....3....1....2....2....1....2....3....2....4....1....0....1
..3....3....1....2....3....0....2....4....1....1....3....2....2....2....0....1
..2....4....1....4....3....1....2....2....1....2....4....3....2....2....0....0
..4....4....1....4....1....1....2....0....1....4....4....0....1....1....0....0
..1....2....1....0....2....2....4....1....0....1....3....4....3....1....1....3
..3....1....2....0....3....4....2....2....0....3....0....2....0....1....2....1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 19 2014
STATUS
approved