OFFSET
1,1
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..181
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: [linear recurrence of order 9] for n>12
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
n=3: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4); also a quadratic polynomial plus a constant quasipolynomial with period 2
EXAMPLE
Table starts
....2.....3......4.......5........6.........7.........8..........9.........10
....4....11.....20......33.......48........67........88........113........140
....8....27.....52......89......132.......187.......248........321........400
...16....79....208.....473......872......1519......2392.......3617.......5184
...32...223....704....1785.....3496......6367.....10640......16909......25152
...64...651...2720....9437....24888.....59415....120412.....222037.....374712
..128..1907..10952...47953...144624....371227....838604....1732385....3243544
..256..5639..45888..264473..1019568...3347259...8983896...21295973...45095084
..512.16967.195516.1440243..6717892..25280899..78435176..215244983..519836920
.1024.52131.852260.8079297.47046932.217539879.789142896.2486304965.6802360404
...
Some solutions for n=6 k=4
..4....2....2....2....3....2....0....2....2....2....1....3....1....2....2....4
..3....1....1....3....0....3....2....1....0....0....4....0....0....4....1....0
..1....0....3....2....2....3....3....4....0....4....1....1....0....3....1....4
..3....3....1....1....0....1....3....1....2....0....3....0....3....3....0....2
..0....1....2....0....0....0....3....3....4....2....2....3....4....2....2....0
..3....4....1....3....3....2....1....4....2....4....0....0....4....2....2....3
..2....2....0....0....3....2....2....2....2....2....1....3....1....0....4....0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 14 2014
STATUS
approved