

A249057


Triangular array: Row n shows the coefficients of polynomials p(n,x) defined in Comments.


5



1, 4, 1, 5, 4, 1, 24, 11, 4, 1, 35, 52, 18, 4, 1, 192, 123, 84, 26, 4, 1, 315, 660, 285, 120, 35, 4, 1, 1920, 1545, 1500, 545, 160, 45, 4, 1, 3465, 9180, 4680, 2820, 930, 204, 56, 4, 1, 23040, 22005, 27180, 11220, 4740, 1470, 252, 68, 4, 1, 45045, 142380
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (n + 1)/f(n1,x), where f(x,0) = 1.
Row sums give A249059(n) for n >= 1.
First column is A249060 (nth term = n!! for n >= 0).


LINKS

Clark Kimberling, Table of n, a(n) for n = 0..5049


EXAMPLE

f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x;
f(2,x) = (5 + 4 x + x^2)/(1 + x), so that p(2,x) = 5 + 4 x + x^2.
First 6 rows of the triangle of coefficients:
1
4 1
5 4 1
24 11 4 1
35 52 18 4 1
192 123 84 26 4 1


MATHEMATICA

z = 12; f[x_, n_] := x + (n+2)/f[x, n  1];
f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}];
u = Numerator[t]; TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]]
Flatten[CoefficientList[u, x]] (* A249057 sequence *)


CROSSREFS

Cf. A249059, A249060.
Sequence in context: A030352 A212643 A104571 * A105721 A099310 A021880
Adjacent sequences: A249054 A249055 A249056 * A249058 A249059 A249060


KEYWORD

nonn,tabl,easy


AUTHOR

Clark Kimberling, Oct 20 2014


STATUS

approved



