OFFSET
0,3
FORMULA
a(n) = 0^0 + Sum_{k=0..n-1} binomial(n,k)*b(k)*c(n-k-1),
where the numbers b(n) = A049425(n+1) have e.g.f. (1+t)^2*exp(t+t^2+t^3/3)
and the numbers c(n) have e.g.f. exp(-(t+t^2+t^3/3)).
D-finite with recurrence: a(n+4) + n*a(n+3) - 3*(n+3)*a(n+2) - 3*(n+3)*(n+2)*a(n+1) - (n+3)*(n+2)*(n+1)*a(n) = 0.
E.g.f.: A(t) = 1+(1+t)^2*exp(t+t^2+t^3/3)*Integral_{u=0..t} exp(-(u+u^2+u^3/3)) du.
Differential equation for the e.g.f.: (1+t)*A''(t) - (2+3*t+3*t^2+t^3)*A'(t) - 3*(1+t)^2*A(t) = 0.
MATHEMATICA
b[n_] := Sum[(n!/k!)Sum[Binomial[k, i]Binomial[k-i+2, n-2i-k]/3^i, {i, 0, k}], {k, 0, n}]
c[n_] := Sum[(n!/k!)(-1)^k Sum[Binomial[k, i]Binomial[k-i, n-2i-k]/3^i, {i, 0, k}], {k, 0, n}]
Table[If[n==0, 1, 0]+Sum[Binomial[n, k]b[k]c[n-k-1], {k, 0, n-1}], {n, 0, 40}]
PROG
(Maxima) b(n) := sum((n!/k!)*sum(binomial(k, i)*binomial(k-i+2, n-2*i-k)/3^i, i, 0, k), k, 0, n);
c(n) := sum((n!/k!)*(-1)^k*sum(binomial(k, i)*binomial(k-i, n-2*i-k)/3^i, i, 0, k), k, 0, n);
makelist((if n=0 then 1 else 0)+sum(binomial(n, k)*b(k)*c(n-k-1), k, 0, n-1), n, 0, 20);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 20 2014
STATUS
approved