login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249015
A binomial convolution.
1
1, 1, 5, 17, 69, 339, 1677, 9321, 55137, 343659, 2285289, 15910857, 116120781, 886308147, 7033465989, 58008074409, 495792941337, 4381170220251, 39980186877537, 376025841184329, 3640077999981189, 36224841818288547, 370112212444620861, 3878334404076375657
OFFSET
0,3
FORMULA
a(n) = 0^0 + Sum_{k=0..n-1} binomial(n,k)*b(k)*c(n-k-1),
where the numbers b(n) = A049425(n+1) have e.g.f. (1+t)^2*exp(t+t^2+t^3/3)
and the numbers c(n) have e.g.f. exp(-(t+t^2+t^3/3)).
D-finite with recurrence: a(n+4) + n*a(n+3) - 3*(n+3)*a(n+2) - 3*(n+3)*(n+2)*a(n+1) - (n+3)*(n+2)*(n+1)*a(n) = 0.
E.g.f.: A(t) = 1+(1+t)^2*exp(t+t^2+t^3/3)*Integral_{u=0..t} exp(-(u+u^2+u^3/3)) du.
Differential equation for the e.g.f.: (1+t)*A''(t) - (2+3*t+3*t^2+t^3)*A'(t) - 3*(1+t)^2*A(t) = 0.
MATHEMATICA
b[n_] := Sum[(n!/k!)Sum[Binomial[k, i]Binomial[k-i+2, n-2i-k]/3^i, {i, 0, k}], {k, 0, n}]
c[n_] := Sum[(n!/k!)(-1)^k Sum[Binomial[k, i]Binomial[k-i, n-2i-k]/3^i, {i, 0, k}], {k, 0, n}]
Table[If[n==0, 1, 0]+Sum[Binomial[n, k]b[k]c[n-k-1], {k, 0, n-1}], {n, 0, 40}]
PROG
(Maxima) b(n) := sum((n!/k!)*sum(binomial(k, i)*binomial(k-i+2, n-2*i-k)/3^i, i, 0, k), k, 0, n);
c(n) := sum((n!/k!)*(-1)^k*sum(binomial(k, i)*binomial(k-i, n-2*i-k)/3^i, i, 0, k), k, 0, n);
makelist((if n=0 then 1 else 0)+sum(binomial(n, k)*b(k)*c(n-k-1), k, 0, n-1), n, 0, 20);
CROSSREFS
Sequence in context: A273763 A149707 A214003 * A273852 A146511 A128887
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 20 2014
STATUS
approved