This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252284 Exponential generating function exp(-x-x^2-x^3/3). 1
 1, -1, -1, 3, 9, -21, -129, 111, 2577, 2871, -57249, -232101, 1175769, 11951523, -6313761, -542318841, -1778088159, 20647593711, 187318128447, -386536525389, -13793029404759, -41926398389541, 783578974052799, 7433562140085663, -22263437361406671, -767083139039850201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA a(n) = sum_{k=0..n} ((n!/k!)*(-1)^k * sum_{i=0..k} C(k,i)*C(k-i,n-2*i-k)/3^i). E.g.f.: exp(-x-x^2-x^3/3). Recurrence: a(n+3)+a(n+2)+2*(n+2)*a(n+1)+(n+2)*(n+1)*a(n)=0. MAPLE S:= series(exp(-x-x^2-x^3/3), x, 101): seq(coeff(S, x, j)*j!, j=0..100); # Robert Israel, Dec 16 2014 MATHEMATICA a[n_] := Sum[(n!/k!)(-1)^k Sum[Binomial[k, i]Binomial[k-i, n-2i-k]/3^i, {i, 0, k}], {k, 0, n}]; Table[a[n], {n, 0, 20}] PROG (Maxima) a(n) := sum((n!/k!)*(-1)^k*sum(binomial(k, i)*binomial(k-i, n-2*i-k)/3^i, i, 0, k), k, 0, n); makelist(a(n), n, 0, 20); (PARI) default(seriesprecision, 40); Vec(serlaplace( exp(-x-x^2-x^3/3))) \\ Michel Marcus, Dec 17 2014 CROSSREFS Cf. A249015. Sequence in context: A067645 A101474 A298836 * A259367 A193374 A191998 Adjacent sequences:  A252281 A252282 A252283 * A252285 A252286 A252287 KEYWORD sign AUTHOR Emanuele Munarini, Dec 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 04:43 EST 2019. Contains 319323 sequences. (Running on oeis4.)