OFFSET
1,1
COMMENTS
Table starts
.2.15.52.101..198..331...512...753..1066...1439...1908...2461...3110...3867
.2.15.52.113..246..427...704..1113..1654...2279...3072...4045...5210...6555
.2.15.52.125..306..555...992..1673..2606...3663...5024...6777...8914..11379
.2.15.52.137..378..715..1412..2535..4142...5939...8300..11457..15402..19957
.2.15.52.149..462..907..2000..3827..6566...9607..13716..19361..26626..35005
.2.15.52.173..594.1219..2960..6069.10858..16099..23300..33707..47400..63085
.2.15.52.197..762.1635..4424..9681.18006..27031..39712..58889..84802.114305
.2.15.52.221..972.2167..6644.15501.29942..45525..67962.103197.152200.207761
.2.15.52.245.1230.2827..9968.24809.49734..76655.116444.180901.273222.377713
.2.15.52.293.1620.3895.15356.40799.84502.131445.201650.321447.496814.694263
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = a(n-1)
k=4: a(n) = a(n-1) +2*a(n-4) -2*a(n-5)
k=5: [order 17]
k=6: [order 17]
k=7: [order 25]
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-3) -a(n-4) +2*a(n-6) -a(n-7); also a cubic polynomial plus a constant quasipolynomial with period 6
n=2: [order 28; also a cubic polynomial plus a linear quasipolynomial with period 360]
EXAMPLE
Some solutions for n=6 k=4
..1....4....1....4....0....0....3....4....0....4....4....2....0....1....4....2
..2....1....1....2....3....1....2....3....1....3....3....3....1....2....2....3
..0....2....2....1....2....2....3....3....3....3....3....0....1....1....1....3
..1....1....4....1....3....1....0....2....0....2....2....3....2....4....1....0
..1....4....1....0....4....4....3....0....0....4....0....2....0....1....4....2
..2....1....1....2....3....1....2....3....1....3....3....3....1....2....2....3
..0....2....2....1....2....2....3....3....3....3....3....4....1....1....1....3
..1....1....0....1....3....1....4....2....0....2....2....3....2....4....1....0
..1....0....1....4....0....4....3....0....0....4....4....2....4....1....4....2
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 08 2014
STATUS
approved