login
A248537
T(n,k)=Number of length n+3 0..k arrays with every four consecutive terms having the sum of some three elements equal to three times the fourth
12
2, 15, 2, 52, 15, 2, 101, 52, 15, 2, 198, 113, 52, 15, 2, 331, 246, 125, 52, 15, 2, 512, 427, 306, 137, 52, 15, 2, 753, 704, 555, 378, 149, 52, 15, 2, 1066, 1113, 992, 715, 462, 173, 52, 15, 2, 1439, 1654, 1673, 1412, 907, 594, 197, 52, 15, 2, 1908, 2279, 2606, 2535
OFFSET
1,1
COMMENTS
Table starts
.2.15.52.101..198..331...512...753..1066...1439...1908...2461...3110...3867
.2.15.52.113..246..427...704..1113..1654...2279...3072...4045...5210...6555
.2.15.52.125..306..555...992..1673..2606...3663...5024...6777...8914..11379
.2.15.52.137..378..715..1412..2535..4142...5939...8300..11457..15402..19957
.2.15.52.149..462..907..2000..3827..6566...9607..13716..19361..26626..35005
.2.15.52.173..594.1219..2960..6069.10858..16099..23300..33707..47400..63085
.2.15.52.197..762.1635..4424..9681.18006..27031..39712..58889..84802.114305
.2.15.52.221..972.2167..6644.15501.29942..45525..67962.103197.152200.207761
.2.15.52.245.1230.2827..9968.24809.49734..76655.116444.180901.273222.377713
.2.15.52.293.1620.3895.15356.40799.84502.131445.201650.321447.496814.694263
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = a(n-1)
k=4: a(n) = a(n-1) +2*a(n-4) -2*a(n-5)
k=5: [order 17]
k=6: [order 17]
k=7: [order 25]
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-3) -a(n-4) +2*a(n-6) -a(n-7); also a cubic polynomial plus a constant quasipolynomial with period 6
n=2: [order 28; also a cubic polynomial plus a linear quasipolynomial with period 360]
EXAMPLE
Some solutions for n=6 k=4
..1....4....1....4....0....0....3....4....0....4....4....2....0....1....4....2
..2....1....1....2....3....1....2....3....1....3....3....3....1....2....2....3
..0....2....2....1....2....2....3....3....3....3....3....0....1....1....1....3
..1....1....4....1....3....1....0....2....0....2....2....3....2....4....1....0
..1....4....1....0....4....4....3....0....0....4....0....2....0....1....4....2
..2....1....1....2....3....1....2....3....1....3....3....3....1....2....2....3
..0....2....2....1....2....2....3....3....3....3....3....4....1....1....1....3
..1....1....0....1....3....1....4....2....0....2....2....3....2....4....1....0
..1....0....1....4....0....4....3....0....0....4....4....2....4....1....4....2
CROSSREFS
Sequence in context: A201050 A299321 A357097 * A352000 A330073 A266584
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 08 2014
STATUS
approved