login
A248191
Decimal expansion of Dedekind eta(2*i).
4
5, 9, 2, 3, 8, 2, 7, 8, 1, 3, 3, 2, 4, 1, 5, 8, 8, 5, 2, 9, 0, 3, 6, 3, 3, 7, 4, 4, 9, 1, 9, 9, 5, 3, 7, 2, 7, 6, 1, 5, 2, 9, 9, 9, 3, 2, 0, 5, 7, 7, 0, 6, 6, 5, 2, 3, 4, 2, 8, 9, 9, 3, 9, 6, 2, 7, 1, 7, 6, 2, 3, 5, 1, 2, 5, 5, 5, 3, 9, 7, 0, 3, 2, 0, 5, 5, 0
OFFSET
0,1
COMMENTS
See A091343.
LINKS
FORMULA
eta(2*i) = c*eta(i) = c*Gamma(1/4)/(2*Pi^(3/4)) = c*A091343, with c = 2^(-3/8).
EXAMPLE
0.5923827813324158852903633744919953727615299932057706652342...
MATHEMATICA
RealDigits[N[Gamma[1/4]/(2^(11/8)*Pi^(3/4)), 120]][[1]] (* Vaclav Kotesovec, Oct 04 2014 *)
PROG
(PARI) eta(2*I, 1)
CROSSREFS
Cf. A091343 (eta(I)), A248190, A248192.
Sequence in context: A227574 A214869 A021632 * A323985 A198734 A332326
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Oct 04 2014
STATUS
approved