login
A248192
Decimal expansion of Dedekind eta(4*i).
4
3, 5, 0, 9, 1, 9, 8, 0, 7, 1, 7, 4, 1, 4, 3, 2, 3, 6, 4, 3, 0, 2, 2, 9, 5, 8, 9, 0, 5, 6, 2, 7, 6, 3, 8, 0, 9, 3, 1, 1, 4, 6, 0, 4, 3, 9, 8, 5, 3, 4, 5, 9, 0, 7, 3, 8, 8, 8, 6, 4, 9, 1, 2, 2, 6, 1, 8, 9, 6, 3, 0, 9, 8, 2, 9, 1, 5, 3, 8, 7, 2, 6, 7, 8, 9, 4, 0
OFFSET
0,1
COMMENTS
See A091343.
LINKS
FORMULA
eta(4*i) = c*eta(i) = c*Gamma(1/4)/(2*Pi^(3/4)) = c*A091343, with c = 2^(-13/16)*(sqrt(2)-1)^(1/4).
EXAMPLE
0.35091980717414323643022958905627638093114604398534590...
MATHEMATICA
RealDigits[N[(Sqrt[2]-1)^(1/4)*Gamma[1/4]/(2^(29/16)*Pi^(3/4)), 120]][[1]] (* Vaclav Kotesovec, Oct 04 2014 *)
PROG
(PARI) eta(4*I, 1)
CROSSREFS
Cf. A091343 (eta(I)), A248190, A248191.
Sequence in context: A021289 A200480 A099895 * A323987 A124222 A200615
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Oct 04 2014
STATUS
approved