login
A247984
Constant terms of congruences derived from a permutation polynomial motivated by generalized quadrangles.
2
2, 6, 8, 10, 32, 84, 128, 186, 512, 1276, 2048, 3172, 8192, 19816, 32768, 52666, 131072, 310764, 524288, 863820, 2097152, 4899736, 8388608, 14073060, 33554432, 77509464, 134217728, 228318856, 536870912, 1228859344, 2147483648
OFFSET
1,1
COMMENTS
Let p be an odd prime, let e be a positive integer, and let q = p^e. Dmytrenko, Lazebnik, and Williford (2007) proved that every monomial graph of girth at least eight is isomorphic to G = G_q(xy, x^ky^(2k)) for some integer k which is not divisible by p. If q = 3, then G is isomorphic to G_3(xy, xy^2). If q >= 5, then F(x) = ((x + 1)^(2k) - 1)x^(q - 1 - k) - 2x^(q - 1) is a permutation polynomial, in which case the Hermite-Dickson Criterion implies that the coefficient at x^(q - 1) in F(x)^n must equal 0 modulo p. a(n) is the constant term of the coefficient at x^(q - 1) in F(x)^n; this was first stated in Kronenthal (2012). The provided Mathematica program produces the first 30 terms of the sequence.
LINKS
V. Dmytrenko, F. Lazebnik, and J. Williford, On monomial graphs of girth eight, Finite Fields and Their Applications 13 (2007), 828-842.
Brian G. Kronenthal, Monomial Graphs and Generalized Quadrangles, Finite Fields and Their Applications, 18 (2012), 674-684.
B. G. Kronenthal, An Integer Sequence Motivated by Generalized Quadrangles, Journal of Integer Sequences, 2015, Vol. 18. #15.7.8.
FORMULA
a(n) = 2^n when n is odd and a(n) = 2^n - (-1)^(n/2)*binomial(n, n/2) when n is even.
From Robert Israel, Oct 01 2014: (Start)
G.f.: 1/(1-2*x) - 1/sqrt(1+4*x^2).
E.g.f.: exp(2*x) - J_0(2*x) where J_0 is a Bessel function. (End)
n*(2*n-3)*a(n) -2*(2*n-1)*(n-1)*a(n-1) +4*(n-1)*(2*n-3)*a(n-2) -8*(2*n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 09 2018
MAPLE
A247984 := proc(n)
if type(n, 'odd') then
2^n;
else
2^n-(-1)^(n/2)*binomial(n, n/2) ;
end if;
end proc: # R. J. Mathar, Jun 09 2018
MATHEMATICA
For[n = 1, n < 31, n++, Piecewise[{{Print[2^n - (-1)^(n/2) * Binomial[n, n/2]], EvenQ[n]}, {Print[2^n], OddQ[n]}}]]
Rest[With[{nn = 50}, CoefficientList[Series[Exp[2*x] - BesselJ[0, 2*x], {x, 0, nn}], x]*Range[0, nn]!]] (* G. C. Greubel, Aug 16 2017 *)
PROG
(PARI) a(n) = if (n % 2, 2^n, 2^n - (-1)^(n/2)*binomial(n, n/2)); \\ Michel Marcus, Oct 01 2014
CROSSREFS
Cf. A246800.
Sequence in context: A066198 A362667 A299381 * A108417 A373057 A185078
KEYWORD
easy,nonn
AUTHOR
Brian G. Kronenthal, Sep 28 2014
STATUS
approved