login
A247864
Decimal expansion of c = 1/(2^(e^(-gamma))-1), a constant associated with the asymptotic convergent denominators of a continued fraction using Mersenne primes.
2
2, 1, 0, 1, 8, 9, 3, 9, 4, 5, 3, 3, 5, 2, 0, 4, 1, 8, 9, 0, 5, 2, 7, 9, 7, 1, 8, 5, 6, 8, 8, 0, 8, 4, 9, 0, 1, 9, 9, 5, 9, 9, 2, 0, 0, 7, 4, 5, 8, 4, 2, 3, 9, 0, 6, 5, 8, 8, 0, 0, 3, 7, 2, 9, 5, 5, 2, 9, 7, 8, 9, 5, 7, 2, 2, 8, 3, 4, 5, 6, 7, 8, 0, 5, 4, 6, 0, 8, 0, 2, 2, 5, 4, 4, 3, 2, 4, 0, 3
OFFSET
1,1
LINKS
Eric Weisstein's MathWorld, Mersenne Prime
Marek Wolf, "Continued fractions constructed from prime numbers" arXiv:1003.4015 [math.NT] Sep 26 2010, p. 24.
FORMULA
c = 1/(2^(e^(-gamma))-1), where gamma is Euler's constant 0.5772...
EXAMPLE
2.1018939453352041890527971856880849019959920074584239...
MATHEMATICA
c = 1/(2^(E^(-EulerGamma)) - 1); RealDigits[c, 10, 99] // First
PROG
(PARI) 1/(2^(exp(-Euler))-1) \\ Michel Marcus, Sep 25 2014
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 1/(2^(Exp(-EulerGamma(R))) - 1); // G. C. Greubel, Sep 04 2018
CROSSREFS
Sequence in context: A085324 A264945 A326476 * A370398 A331278 A266632
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved