login
A247862
Primes p that generate the prime quadruplets p^3-4p+2k (for k = -2, -1, 1, 2).
1
3, 5, 67, 395407, 703903, 753583, 874373, 1280417, 1386977, 2920543, 3459487, 3697927, 3905527, 4384543, 4524427, 5630503, 6289343, 6379517, 7882873, 8599993, 8805653
OFFSET
1,1
EXAMPLE
5^3-4*5-4=101, 5^3-4*5-2=103, 5^3-4*5+2=107, 5^3-4*5+4=109 is a prime quadruplet, so 5 is in the sequence.
MATHEMATICA
Select[Prime[Range[600000]], AllTrue[#^3-4#+2{-2, -1, 1, 2}, PrimeQ]&] (* Harvey P. Dale, Feb 16 2024 *)
PROG
(PARI) lista(nn) = {forprime(p=2, nn, pp = p^3-4*p; if (isprime(pp-4) && isprime(pp-2) && isprime(pp+2) && isprime(pp+4), print1(p, ", ")); ); } \\ Michel Marcus, Oct 10 2014
CROSSREFS
Cf. A247863.
Sequence in context: A076513 A222611 A261071 * A348205 A145616 A306255
KEYWORD
nonn,more
AUTHOR
Ray G. Opao, Sep 25 2014
EXTENSIONS
a(8)-a(21) from Michel Marcus, Oct 10 2014
STATUS
approved