login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A247688 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3), 3-principalization type (2143), IPAD [(3,9)^4], and Hilbert 3-class field tower of unknown length at least 3. 3
12067, 49924, 54195, 60099, 83395, 86551, 91643, 93067, 96551 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

These fields are characterized either by their 3-principalization type (transfer kernel type, TKT) (2143), G.19, or equivalently by their transfer target type (TTT) [(3,9)^4] (called IPAD by Boston, Bush, Hajir). The latter is used in the MAGMA PROG. The TKT (2143) is a permutation composed of two disjoint transpositions without fixed point.

For all these discriminants, the metabelianization of the 3-tower group is the unbalanced group SmallGroup(729, 57), whence it is completely open whether the tower must terminate at a finite stage or not. Consequently, these discriminants are among the foremost challenges of future research.

12067 has been discovered by Heider and Schmithals.

REFERENCES

F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.

D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.

LINKS

Table of n, a(n) for n=1..9.

N. Boston, M. R. Bush, F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, arXiv:1111.4679 [math.NT], 2011, Math. Ann. (2013).

D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014.

EXAMPLE

Already the smallest term 12067 resists all attempts to determine the length of its Hilbert 3-class field tower.

PROG

(MAGMA)

for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo<C|x`subgroup>: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (0 eq e) then d, ", "; end if; end if; end if; end for;

CROSSREFS

Cf. A242862, A242863 (supersequences), and A242864, A242873 (disjoint sequences).

Sequence in context: A064966 A252304 A251680 * A236726 A236701 A259523

Adjacent sequences:  A247685 A247686 A247687 * A247689 A247690 A247691

KEYWORD

hard,more,nonn

AUTHOR

Daniel Constantin Mayer, Sep 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 13:59 EST 2017. Contains 294972 sequences.