login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247688
Absolute discriminants of complex quadratic fields with 3-class group of type (3,3), 3-principalization type (2143), IPAD [(3,9)^4], and Hilbert 3-class field tower of unknown length at least 3.
3
12067, 49924, 54195, 60099, 83395, 86551, 91643, 93067, 96551
OFFSET
1,1
COMMENTS
These fields are characterized either by their 3-principalization type (transfer kernel type, TKT) (2143), G.19, or equivalently by their transfer target type (TTT) [(3,9)^4] (called IPAD by Boston, Bush, Hajir). The latter is used in the MAGMA PROG. The TKT (2143) is a permutation composed of two disjoint transpositions without fixed point.
For all these discriminants, the metabelianization of the 3-tower group is the unbalanced group SmallGroup(729, 57), whence it is completely open whether the tower must terminate at a finite stage or not. Consequently, these discriminants are among the foremost challenges of future research.
12067 has been discovered by Heider and Schmithals.
REFERENCES
F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
LINKS
N. Boston, M. R. Bush, F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, arXiv:1111.4679 [math.NT], 2011, Math. Ann. (2013).
D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014.
EXAMPLE
Already the smallest term 12067 resists all attempts to determine the length of its Hilbert 3-class field tower.
PROG
(Magma)
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo<C|x`subgroup>: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (0 eq e) then d, ", "; end if; end if; end if; end for;
CROSSREFS
Cf. A242862, A242863 (supersequences), and A242864, A242873 (disjoint sequences).
Sequence in context: A292815 A252304 A251680 * A236726 A236701 A259523
KEYWORD
hard,more,nonn
AUTHOR
STATUS
approved