OFFSET
1,1
COMMENTS
This is the best studied subsequence of A242862. For all these discriminants, the metabelianization of the 3-tower group is known. For two extensive subsequences the 3-class tower has exact length 2, resp. 3.
REFERENCES
F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
B. Nebelung, Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Univ. zu Köln, 1989.
LINKS
J. R. Brink and R. Gold, Class field towers of imaginary quadratic fields, manuscripta math. 57 (1987), 425-450.
M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, arXiv:1312.0251 [math.NT], 2013, J. Number Theory (2014)
A. Scholz and O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper, J. Reine Angew. Math. 171 (1934), 19-41.
EXAMPLE
The exact length of the 3-class field tower is 2 for n=2,4,7, and 3 for n=5,8,9.
PROG
(Magma)
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then d, ", "; end if; end if; end for;
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Daniel Constantin Mayer, May 24 2014
STATUS
approved