login
A246909
a(n) = the smallest numbers k such that sigma(k+sigma(k)) = n* sigma(k) or -1 if no solution exists or has been found for n.
6
-1, 2, 1, 28, 15456, 831376
OFFSET
1,2
COMMENTS
a(7) > 10^7 or -1.
EXAMPLE
Sequence of numbers k such that sigma(k+sigma(k)) = n* sigma(k) for 1 <= n <= 6:
n = 2: 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, … (A246857).
n = 3: 1, 7, 26, 30, 42, 54, 69, 78, 84, 94, 102, 103, 114, … (A246910).
n = 4: 28, 66, 348, 496, 840, 920, 1320, 1416, 1602, 1770, … (A246911).
n = 5: 15456, 16920, 48576, 59520, 107160, 153360, 232596, … (A246912).
n = 6: 831376, 3944688, 16956576, 17843616, … (A246913).
PROG
(Magma) A246909:=func<n|exists(r){m: m in[1..1000000] | SumOfDivisors(m+SumOfDivisors(m))eq n*SumOfDivisors(m)}select r else-1>; [A246909(n): n in[1..10]]
CROSSREFS
KEYWORD
sign
AUTHOR
Jaroslav Krizek, Sep 07 2014
STATUS
approved