login
A246882
G.f. A(x) satisfies: 1-x = Sum_{n>=0} (A(x)^n + x^n)^n * (-x)^n.
1
1, 0, -1, -1, 4, 10, -16, -58, 139, 549, -862, -4468, 6470, 41631, -38057, -384497, 190622, 3773087, -107999, -37440917, -12558347, 374625122, 240279936, -3657434817, -3489240401, 34354613614, 49461991317, -310025049551, -716262462758, 2811996166969, 10210014807369
OFFSET
0,5
LINKS
EXAMPLE
G.f.: A(x) = 1 - x^2 - x^3 + 4*x^4 + 10*x^5 - 16*x^6 - 58*x^7 + 139*x^8 +...
where
1-x = 1 - (A(x) + x)*x + (A(x)^2 + x^2)^2*x^2 - (A(x)^3 + x^3)^3*x^3 + (A(x)^4 + x^4)^4*x^4 - (A(x)^5 + x^5)^5*x^5 + (A(x)^6 + x^6)^6*x^6 - (A(x)^7 + x^7)^7*x^7 +-...
PROG
(PARI) {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=Vec(sum(k=0, #A, (Ser(A)^k + x^k)^k*(-x)^k))[#A+1]); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A056486 A233452 A061682 * A038240 A369613 A211160
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 26 2014
STATUS
approved