OFFSET
1,4
COMMENTS
a(1) > 0 and a(n) >= 0 for n < 76; this implies "if p=p(k) is in the sequence A002386 and p <= 1425172824437699411 then p(k+1)^(1/(k+1)) < p(k)^(1/k)."
LINKS
A. Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015
A. Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, J. Int. Seq. 18 (2015) 15.11.2
Wikipedia, Firoozbakht's Conjecture
MATHEMATICA
f[n_] := Block[{d, i, j, m = 0}, Reap@ For[i = 1, i <= n, i++, d = Prime[i + 1] - Prime@ i; If[d > m, m = d; Sow@ i, False]] // Flatten // Rest] (* A005669 *); g[n_] := Floor[Prime[n]^(1 + 1/n)] - Prime[n + 1] (* A246776 *); g@ f@ 100000; (* Michael De Vlieger, Mar 24 2015, with code from A246776 by Farideh Firoozbakht *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Farideh Firoozbakht, Sep 30 2014
STATUS
approved