OFFSET
1,1
COMMENTS
Table starts
.2..10....60.....172......462.......966.......1880........3256.........5370
.2..14...132.....484.....1734......4386......10376.......20840........39690
.2..20...292....1376.....6534.....20004......57416......133664.......293770
.2..28...644....3904....24582.....91212.....317576......857248......2174090
.2..38..1420...11020....92478....415650....1756472.....5497304.....16089370
.2..52..3132...31104...347934...1893780....9714968....35251360....119069850
.2..72..6908...87888..1309038...8628792...53733080...226048032....881180090
.2.100.15236..248568..4924998..39320988..297195272..1449551536...6521200010
.2.138.33604..702724.18529350.179184654.1643773832..9295405128..48260338570
.2.190.74116.1985932.69713094.816514170.9091640072.59607621016.357152100490
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9999
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-4)
k=3: a(n) = 2*a(n-1) +a(n-3)
k=4: a(n) = 2*a(n-1) +a(n-3) +14*a(n-4) +3*a(n-5) +6*a(n-6) +a(n-8) +a(n-9)
k=5: a(n) = 3*a(n-1) +2*a(n-2) +3*a(n-3) +a(n-4)
k=6: [order 10]
k=7: a(n) = 5*a(n-1) +2*a(n-2) +5*a(n-3) +a(n-4)
k=8: [order 10]
k=9: a(n) = 7*a(n-1) +2*a(n-2) +7*a(n-3) +a(n-4)
From Robert Israel, Nov 10 2024: (Start)
It appears that for k >= 5 odd, the recurrence for column k is
a(n) = (k - 2)*a(n-1) + 2*a(n-2) + (k - 2)*a(n-3) + a(n-4)
and that for k >= 6 even, the recurrence for column k is
a(n) = (k - 3)*a(n-1) + 2*a(n-2) + (k-3)*a(n-3) + (k^3 - 6*k^2 + 15*k - 13)*a(n-4) + (3*k^2 - 11*k + 13)*a(n-5) + (k^3 - 7*k^2 + 19*k - 19)*a(n-6) + (k^2 - 4*k + 6)*a(n-7) + a(n-8) + (k - 2)*a(n-9) + a(n-10). (End)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=2: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=3: [order 11]
n=4: [order 13]
n=5: [order 15]
n=6: [order 17]
n=7: [order 19]
EXAMPLE
Some solutions for n=5 k=4
..0....3....0....2....2....2....3....2....2....0....4....4....0....0....1....0
..2....4....0....3....0....4....4....1....0....1....3....3....0....0....0....2
..1....3....2....0....3....4....2....0....0....0....3....3....0....3....2....1
..0....4....0....3....3....3....4....0....0....1....3....4....1....2....1....1
..0....4....1....0....3....4....4....0....1....1....3....3....0....3....1....4
..0....3....0....0....4....3....4....1....0....0....3....4....1....4....4....4
..1....3....1....2....3....3....4....0....0....1....2....4....0....3....1....1
..0....3....1....3....3....4....4....1....1....2....3....3....1....4....1....1
MAPLE
G:= proc(m, k) # first m terms in column k
local q, r, s, S, nS, M, u, v, V, i;
S:= remove(t -> t[1]+t[2]=k or t[1]+t[3]=k or t[2]+t[3]=k, [seq(seq(seq([q, r, s], s=0..k), r=0..k), q=0..k)]);
nS:= nops(S);
M:= Matrix(nS, nS, (i, j) -> `if`(S[i][2..3] = S[j][1..2] and S[i][1] + S[j][3] <> k, 1, 0));
u:= Vector[column](nS, 1); v:= u;
V:= Vector(m);
for i from 1 to m do
v:= M . v;
V[i]:= u^%T . v
od;
V
end proc:
R:= Matrix(10, 20):
interface(rtablesize=[10, 20]):
for j from 1 to 20 do R[.., j] := G(10, j) od:
R; # Robert Israel, Nov 10 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 27 2014
STATUS
approved