login
A346239
Möbius transform of A341512, sigma(n)*A003961(n) - n*sigma(A003961(n)).
6
0, 1, 2, 10, 2, 33, 4, 74, 44, 55, 2, 278, 4, 115, 116, 490, 2, 613, 4, 498, 242, 169, 6, 1942, 92, 265, 742, 1046, 2, 1591, 6, 3086, 344, 355, 330, 4986, 4, 487, 542, 3570, 2, 3347, 4, 1638, 2326, 737, 6, 12542, 376, 2121, 716, 2546, 6, 9869, 388, 7510, 986, 943, 2, 12894, 6, 1225, 4872, 18970, 630, 5353, 4, 3498, 1492
OFFSET
1,3
FORMULA
a(n) = Sum_{d|n} A008683(n/d) * A341512(d).
a(n) = A341512(n) - A346240(n).
a(n) = A347125(n) - A347124(n). - Antti Karttunen, Aug 25 2021
PROG
(PARI)
A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
A341528(n) = (n*sigma(A003961(n)));
A341529(n) = (sigma(n)*A003961(n));
A341512(n) = (A341529(n)-A341528(n));
A346239(n) = sumdiv(n, d, moebius(n/d)*A341512(d));
CROSSREFS
Cf. also the sequences A001359, A029710, A031924 that give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.
Sequence in context: A121521 A280033 A347096 * A188635 A246479 A359694
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 13 2021
STATUS
approved