login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245810
Genus of the complete intersection of two hypersurfaces in P^3.
1
0, 1, 3, 4, 6, 9, 10, 15, 16, 19, 21, 25, 28, 31, 33, 36, 45, 46, 49, 51, 55, 64, 66, 73, 76, 78, 81, 85, 91, 99, 100, 105, 106, 109, 120, 121, 129, 136, 141, 144, 145, 153, 163, 166, 169, 171, 181, 190, 196, 199, 201, 210, 225, 226, 231, 235, 241, 243
OFFSET
1,3
COMMENTS
Integers that can be written as d*e*(d+e-4)/2+1 for positive integers d and e.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..10000
MAPLE
filter:= proc(n)
local m, S, Q;
m:= 2*(n-1);
S:= numtheory:-divisors(m);
Q:= map(d ->(4*d-m+sqrt(4*d^3 + 16*d^2 - 8*d*m + m^2))/(2*d), S);
evalb(select(type, Q, posint) <> {})
end proc:
filter(0):= true:
filter(1):= true:
select(filter, [$0..1000]); # Robert Israel, Aug 24 2014
MATHEMATICA
Module[{gmax = 300, g}, Reap[Do[g = d e (d + e - 4)/2 + 1; If[IntegerQ[g], Sow[g]], {d, Ceiling[(3 + Sqrt[1 + 8 gmax])/2]}, {e, d}]][[2, 1]] // Select[#, # <= gmax &]& // Union] (* Jean-François Alcover, Sep 12 2020 *)
CROSSREFS
Sequence in context: A368136 A130904 A034706 * A054686 A005214 A268110
KEYWORD
nonn
AUTHOR
Richard Shadrach, Aug 22 2014
EXTENSIONS
b-file corrected by Jean-François Alcover, Sep 12 2020
STATUS
approved