This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005214 Triangular numbers together with squares (excluding 0). 12
 1, 3, 4, 6, 9, 10, 15, 16, 21, 25, 28, 36, 45, 49, 55, 64, 66, 78, 81, 91, 100, 105, 120, 121, 136, 144, 153, 169, 171, 190, 196, 210, 225, 231, 253, 256, 276, 289, 300, 324, 325, 351, 361, 378, 400, 406, 435, 441, 465, 484, 496, 528, 529, 561, 576, 595, 625, 630, 666, 676 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A010052(a(n)) + A010054(a(n)) > 0, A010052(a(A193714(n))) = 1, A010054(a(A193715(n))) = 1. - Reinhard Zumkeller, Aug 03 2011 REFERENCES Hofstadter, D. R., Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, (together with the Fluid Analogies Research Group), NY: Basic Books, 1995. p. 15. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Square Triangular Number D. R. Hofstadter, Analogies and Sequences: Intertwined Patterns of Integers and Patterns of Thought Processes, DIMACS Conference on Challenges of Identifying Integer Sequences, Rutgers University, October 10 2014; Part 1, Part 2. MAPLE a := proc(n) floor(sqrt(n)): floor(sqrt(n+n)): `if`(n+n = %*% + % or n = %% * %%, n, NULL) end: # Peter Luschny, May 01 2014 MATHEMATICA With[{upto=700}, Module[{maxs=Floor[Sqrt[upto]], maxt=Floor[(Sqrt[8upto+1]- 1)/2]}, Union[Join[Range[maxs]^2, Table[(n(n+1))/2, {n, maxt}]]]]] (* Harvey P. Dale, Sep 17 2011 *) PROG (Haskell) import Data.List.Ordered (union) a005214 n = a005214_list !! (n-1) a005214_list = tail \$ union a000290_list a000217_list -- Reinhard Zumkeller, Feb 15 2015, Aug 03 2011 (PARI) upTo(lim)=vecsort(concat(vector(sqrtint(lim\1), n, n^2), vector(floor(sqrt(2+2*lim)-1/2), n, n*(n+1)/2)), , 8) \\ Charles R Greathouse IV, Aug 04 2011 CROSSREFS Cf. A054686. Cf. A001110; union of A000290 and A000217; A117704 (first differences), A193711 (partial sums); A193748, A193749 (partitions into). Cf. A241241 (subsequence). Cf. A242401 (complement). Sequence in context: A034706 A245810 A054686 * A268110 A124093 A025061 Adjacent sequences:  A005211 A005212 A005213 * A005215 A005216 A005217 KEYWORD nonn,easy AUTHOR Russ Cox, Jun 14 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 22:34 EDT 2019. Contains 328335 sequences. (Running on oeis4.)