login
Triangle read by rows: entries on or below the main diagonal in A245558.
6

%I #16 May 18 2024 09:53:58

%S 1,1,1,1,2,3,1,2,5,8,1,3,7,14,25,1,3,9,20,42,75,1,4,12,30,66,132,245,

%T 1,4,15,40,99,212,429,800,1,5,18,55,143,333,715,1430,2700,1,5,22,70,

%U 200,497,1144,2424,4862,9225,1,6,26,91,273,728,1768,3978,8398,16796,32065,1,6,30,112,364,1026,2652,6288,13995,29372,58786,112632

%N Triangle read by rows: entries on or below the main diagonal in A245558.

%C See A245558 for identification of other sequences occurring in this triangle.

%H A. Elashvili and M. Jibladze, <a href="http://dx.doi.org/10.1016/S0019-3577(98)80021-9">Hermite reciprocity for the regular representations of cyclic groups</a>, Indag. Math. (N.S.) 9 (1998), no. 2, 233-238; MR1691428 (2000c:13006).

%H A. Elashvili, M. Jibladze, and D. Pataraia, <a href="http://dx.doi.org/10.1023/A:1018727630642">Combinatorics of necklaces and "Hermite reciprocity"</a>, J. Algebraic Combin. 10 (1999), no. 2, 173-188; MR1719140 (2000j:05009). See p. 174.

%H J. E. Iglesias, <a href="https://doi.org/10.1524/zkri.2006.221.4.237">Enumeration of closest-packings by the space group: a simple approach</a>, Z. Krist. 221 (2006) 237-245, eq. (5).

%e Triangle begins:

%e 1,

%e 1, 1,

%e 1, 2, 3,

%e 1, 2, 5, 8,

%e 1, 3, 7, 14, 25,

%e 1, 3, 9, 20, 42, 75,

%e 1, 4, 12, 30, 66, 132, 245,

%e 1, 4, 15, 40, 99, 212, 429, 800,

%e 1, 5, 18, 55, 143, 333, 715, 1430, 2700,

%e 1, 5, 22, 70, 200, 497, 1144, 2424, 4862, 9225,

%e 1, 6, 26, 91, 273, 728, 1768, 3978, 8398, 16796, 32065,

%e 1, 6, 30, 112, 364, 1026, 2652, 6288, 13995, 29372, 58786, 112632

%e ...

%p A245559 := proc(p,q)

%p local d;

%p a := 0 ;

%p for d from 1 to max(p,q) do

%p if modp(p,d)=0 and modp(q,d)=0 then

%p a := a+numtheory[mobius](d)*(binomial((p+q)/d,p/d)) ;

%p end if ;

%p end do:

%p a/(p+q) ;

%p end proc:

%p seq(seq( A245559(p,q),q=1..p),p=1..12) ; # _R. J. Mathar_, Apr 15 2024

%t A245559[p_, q_] := Module[{d, a = 0}, For[d = 1, d <= Max[p, q], d++, If[Mod[p, d] == 0 && Mod[q, d] == 0, a = a + MoebiusMu[d]*Binomial[ (p+q)/d, p/d]]]; a/(p+q)];

%t Table[Table[A245559[p, q], {q, 1, p}], {p, 1, 12}] // Flatten (* _Jean-François Alcover_, May 17 2024, after _R. J. Mathar_ *)

%Y Cf. A245558.

%K nonn,tabl

%O 1,5

%A _N. J. A. Sloane_, Aug 07 2014