login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245558 Square array read by antidiagonals: T(n,k) = number of n-tuples of nonnegative integers (u_0,...,u_{n-1}) satisfying Sum_{j=0..n-1} j*u_j == 1 mod n and Sum_{j=0..n-1} u_j = m. 8
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 7, 8, 7, 3, 1, 1, 4, 9, 14, 14, 9, 4, 1, 1, 4, 12, 20, 25, 20, 12, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

The array is symmetric; for the entries on or below the diagonal see A245559.

If the congruence in the definition is changed from Sum_{j=0..n-1} j*u_j == 1 mod n  to Sum_{j=0..n-1} j*u_j == 0 mod n we get the array shown in A241926, A047996, and A037306.

Differs from A011847 from row n = 9, k = 4 on; if the rows are surrounded by 0's, this yields A051168 without its rows 0 and 1, i.e., a(1) is A051168(2,1). - M. F. Hasler, Sep 29 2018

This array was first studied by Fredman (1975). - Petros Hadjicostas, Jul 10 2019

LINKS

Table of n, a(n) for n=1..78.

Taylor Brysiewicz, Necklaces count polynomial parametric osculants, arXiv:1807.03408 [math.AG], 2018.

A. Elashvili, M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9 (1998), no. 2, 233-238. MR1691428 (2000c:13006).

A. Elashvili, M. Jibladze, D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173-188. MR1719140 (2000j:05009). See p. 174.

M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.

I. M. Gessel and C. Reutenauer, Counting permutations with given cycle structure and descent set, J. Combin. Theory, Ser. A, 64, 1993, 189-215, Theorem 9.4.

EXAMPLE

Square array begins:

  1, 1,  1,  1,   1,   1,    1,    1,    1,    1, ...

  1, 1,  2,  2,   3,   3,    4,    4,    5,    5, ...

  1, 2,  3,  5,   7,   9,   12,   15,   18,   22, ...

  1, 2,  5,  8,  14,  20,   30,   40,   55,   70, ...

  1, 3,  7, 14,  25,  42,   66,   99,  143,  200, ...

  1, 3,  9, 20,  42,  75,  132,  212,  333,  497, ...

  1, 4, 12, 30,  66, 132,  245,  429,  715, 1144, ...

  1, 4, 15, 40,  99, 212,  429,  800, 1430, 2424, ...

  1, 5, 18, 55, 143, 333,  715, 1430, 2700, 4862, ...

  1, 5, 22, 70, 200, 497, 1144, 2424, 4862, 9225, ...

  ...

Reading by antidiagonals, we get:

  1;

  1, 1;

  1, 1,  1;

  1, 2,  2,  1;

  1, 2,  3,  2,  1;

  1, 3,  5,  5,  3,   1;

  1, 3,  7,  8,  7,   3,   1;

  1, 4,  9, 14, 14,   9,   4,  1;

  1, 4, 12, 20, 25,  20,  12,  4,  1;

  1, 5, 15, 30, 42,  42,  30, 15,  5,  1;

  1, 5, 18, 40, 66,  75,  66, 40, 18,  5, 1;

  1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1;

  ...

MAPLE

# To produce the first 10 rows and columns (as on page 174 of the Elashvili et al. 1999 reference):

with(numtheory):

cnk:=(n, k) -> add(mobius(n/d)*d, d in divisors(gcd(n, k)));

anmk:=(n, m, k)->(1/(n+m))*add( cnk(d, k)*binomial((n+m)/d, n/d), d in divisors(gcd(n, m))); # anmk(n, m, k) is the value of a_k(n, m) as in Theorem 1, Equation (4), of the Elashvili et al. 1999 reference.

r2:=(n, k)->[seq(anmk(n, m, k), m=1..10)];

for n from 1 to 10 do lprint(r2(n, 1)); od:

MATHEMATICA

rows = 12;

cnk[n_, k_] := Sum[MoebiusMu[n/d] d, {d , Divisors[GCD[n, k]]}];

anmk[n_, m_, k_] := (1/(n+m)) Sum[cnk[d, k] Binomial[(n+m)/d, n/d], {d, Divisors[GCD[n, m]]}];

r2[n_, k_] := Table[anmk[n, m, k], {m, 1, rows}];

T = Table[r2[n, 1], {n, 1, rows}];

Table[T[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Nov 05 2018, from Maple *)

CROSSREFS

This array is very similar to but different from A011847.

Cf. A051168, A241926, A047996, A037306, A245559.

Rows include A001840, A006918, A051170, A011796, A011797, A031164. Main diagonal is A022553.

Sequence in context: A176298 A259575 A169623 * A011847 A091325 A193596

Adjacent sequences:  A245555 A245556 A245557 * A245559 A245560 A245561

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Aug 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)