login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245466
a(n) = sigma_1(1) + sigma_2(2) + sigma_3(3) + ... + sigma_n-1(n-1) + sigma_n(n).
7
1, 6, 34, 307, 3433, 50883, 874427, 17717436, 405157609, 10414924259, 295726594871, 9214021138217, 312089127730471, 11424774176377721, 449318695089164129, 18896344248070459234, 846136606134407223412, 40192694877626586149007, 2018612350537940175272987
OFFSET
1,2
COMMENTS
Let sigma_k(n) represent the sum of the k-th powers of the divisors of n.
Then a(n) = Sum_{k=1..n} sigma_k(k), the partial sums of sigma_k(k) for k from 1 to n.
Partial sums of A023887.
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..100
FORMULA
a(n) = Sum_{k=1..n} sigma_k(k).
a(1) = 1. a(n) = a(n-1) + sigma_n(n), for n > 1. - Jens Kruse Andersen, Jul 29 2014
a(n) = n + Sum_{d=2..n} (d^(d*(floor(n/d)+1))-d^d)/(d^d-1). - Chayim Lowen, Aug 04 2015
EXAMPLE
a(1) = 1 because sigma_1(1) = sigma(1) = 1.
a(2) = 6: sigma_1(1) + sigma_2(2) = 1 + (1^2 + 2^2) = 6.
a(3) = 34: sigma_1(1) + sigma_2(2) + sigma_3(3) = 6 + (1^3 + 3^3) = 34.
a(4) = 307: sigma_1(1) + ... + sigma_4(4) = 34 + (1^4 + 2^4 + 4^4) = 307.
MAPLE
B:= [seq(numtheory:-sigma[n](n), n=1..100)]:
seq(add(B[i], i=1..n), n=1..100); # Robert Israel, Jul 28 2014
MATHEMATICA
Table[Sum[DivisorSigma[k, k], {k, n}], {n, 20}]
Accumulate[Table[DivisorSigma[n, n], {n, 20}]] (* Harvey P. Dale, Apr 10 2018 *)
PROG
(PARI)
a(n) = sum(i=1, n, sigma(i, i))
vector(50, n, a(n)) \\ Derek Orr, Jul 27 2014
(Magma) [&+[DivisorSigma(i, i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Jul 29 2014
(Magma) [n eq 1 select 1 else Self(n-1)+ DivisorSigma(n, n): n in [1..20]]; // Vincenzo Librandi, Aug 05 2015
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 22 2014
STATUS
approved